Supplemental Data
“A simple and reproducible breast cancer prognostic test”

Luigi Marchionni!, Bahman Afsari*, Donald Geman3*, and Jeffrey T. Leek?

'The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
2Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
3Institute for Computational Medicine, Johns Hopkins University
4Department of Applied Mathematics and Statistics, Johns Hopkins University

April 8, 2013

Contents
I_Overviewl 4
2 R-Bioconductor analytical packages| 4
[3 (ene expression and clinical data preparation| 6
|3.1 'The mammaPrintData R-Bioconductor package| 6
3.2 Glas cohort: ArrayExpress “E-TABM-115" series| 7
13.2.1 Dye-swap hybridization pairs identification| 7
13.2.2 Gene expression correction and summarization| L. 10
13.3 Buyse cohort: Arraykxpress “E-TABM-77"series|, 14
[3.3.1 Gene expression correction and summarization| L. 14
3.4 End-point and prognostic groups selection| 17
[3.4.1 Training set: Glas cohort (E-TABM-115)] 17
[3.4.2 Test set: Buyse cohort (E-TABM-T7)| o o v i v e 19
[3.5 Comparing the clinical information across studies and cohorts| 20
[3.5.1 The van’t Veer cases in the Glasstudy | 21
[3.5.2 The Van de Vijver cases in the Glas study | 22
[4 Prognostic predictor training] 23
4.1 K-TSP classifier development using the Glas dataset|. 24
4.1.1 Definition of the &-TSP classifier training tunctions| 24
4.1.2 k optimization based on resubstitution AUC|. 25
4.2 Re-training of the MammaPrint classifier|] 31
4.3 Development of other classifiers using the Glas dataset| 32
4.3.1 LDA classifier training| e 32
4.3.2 PAM classifier training]. e 33
4.4 ROC-AUC analysis in the Glas cohort| 35
[5 Prognostic predictor validation| 36
5.1 K TSP classifier performance in the Buyse cohort| 0L, 36

1

b.2 MammaPrint assay pertormance in the Buyse cohort| 39
9.2.1 Reported MammaPrint predictions| oL, 39

5.2.2 Retrained MammaPrint predictions| oL, 40

[5.3 Performance of other classifiers in the Buyse cohort|. 41
5.3.1 LDA pertormance in the Buyse cohort|, 41

[5.3.2 PAM performance in the Buyse cohort|. o000 41

5.4 Pertormance of clinical classifiers in the Buyse cohort|. 42
[5.4.1 Adjuvan! online performance in the Buyse cohort|. 42

15.4.2 NPI performance in the Buyse cohort| 43

[5.4.3 St Gallen performance in the Buyse cohort| o000 43

5.5 ROC-AUC analysis in the Buyse cohort| 44
[5.6 Survival analysis in the Buyse cohorts|o oo 45
9.6.1 Time to development of metastasig| L oL 45

5.6.2 Disease free survivall 50

(.63 Overall survivall. e 55

[5.6.4 Summary of Cox proportional hazards models analysis|. 60

[5.7 Stratification by estrogen receptor status|. L Lo 60

[6 System information| 62
[7_References| 63

List of Tables

1 The mammaPrintData package content| 7
[2 The seventyGeneData package content| L oL 21
13 Cases from the Glas study missing or with different clinical information in the van’t Veer study| 22
|4 Cases from the van’t Veer study missing or with different clinical information in the Glas study| 22
15 ROC parameters tor the A&TSP classifier combining the top 5 THSPs|. 26
|6 ROC parameters for the £-TSP classifier combining the top 6 TSPs|. 27
7 ROC parameters tor the k&TSP classifier combining the top 7 TSPs|. 27
8 ROC parameters for the &-TSP classifier combining the top 8 TSPs|. 27
19 ROC parameters tor the A&TSP classifier combining the top 9 THPs|. 27
(10 Individual TSP contained in the final classifier) oo 28
[11 Cox proportional hazard model results| L 60

List of Figures

11 AUC for increasing &-TSP combinations| 26
2 ROC curves for the best TSP combinationd 28
13 Individual TSP predictions: Glas dataset| 30
4 PAM shrunken centroids 33
b PAM misclassification errorl L L 34
|6 ROC-AUC analysis in the training set: Glas cohort|. 35
7 Individual TSP predictions: Buyse dataset (first set) 37
8 Individual TSP predictions: Buyse dataset (second set)| 38
19 ROC-AUC analysis in the test set: Buyse cohort| 45

2

110 Kaplan-Meier curves for &'T'SP prediction: time to development ot metastasis.|
11 Kaplan-Meier curves for the mammaPrint prediction: time to development of metastasis.|

12 Kaplan-Meier curves for the LDA prediction: time to development of metastasis.|
13 Kaplan-Meier curves for the PAM prediction: time to development of metastasis.|
14 Kaplan-Meier curves for &TSP prediction: disease free survival,|.
[15 Kaplan-Meier curves for mammaPrint prediction: disease free survival|.
116 Kaplan-Meier curves for LDAprediction: disease free survival,|
117 Kaplan-Meier curves for PAMprediction: disease free survival|.
18 Kaplan-Meier curves for &TSP prediction: overall survival.|
19 Kaplan-Meier curves for mammaPrint prediction: overall survival|
20 Kaplan-Meier curves for LDA prediction: overall survival.|

PRI

Kaplan-Meier curves for PAM prediction: overall survival|.

48

50
52
93
54
95

1 Overview

In the present study we analyzed the expression of the genes constituting the 70-gene breast cancer prognostic
signature [I, 2], as implemented in the MammaPrint assay [3, 4], to develop novel and simple prognostic
predictors based on the Top-Scoring-Pair (TSP) algorithm [5] 6]. In compliance to recently suggested policies
for reproducible research in computational science [7], this document contains the complete R code used
to:

1. Download and install the data sets used in the manuscript:

(a) the Glas data set (ArrayExpress [8] “E-TABM-115"), analyzed on the 1.9k MammaPrint array
combining the two original cohorts above;

(b) the Buyse data set (ArrayExpress “E-TABM-77"), a multicenter validation cohort analyzed on the
1.9k MammaPrint array;

(c) the original van’t Veer data set, analyzed on the two-colors Agilent/Rosetta 24k array;

(d) the orignal Vand de Vijver data set, analyzed on the two-colors Agilent/Rosetta 24k array;
2. Pre-process and normalize all gene expression data as necessary;
3. Obtain the 70-gene list used to implement the MammaPrint assay;
4. Analyze the data using the Top-Scoring-Pair (TSP) and the &TSP algorithms [5] [6].

For a compete review of these breast cancer studies see Marchionni et al [9, [10]. The complete R code, the
libraries used to perform all analyses, and the Sweave file used to produce this document are available from
the website accompanying this manuscript (http://luigimarchionni.org/breastTSP.html).

2 R-Bioconductor analytical packages

The following R packages were used to perform our analyses and produce this vignette:

e switchBox: a library that implements the methods and classes necessary to perform the kTSP classi-
fication [5], [6]. This package can be currently obtained from the website accompanying this manuscript
(http://luigimarchionni.org/breastTSP.html), and will be also available with the next Biocon-
ductor release;

e survival: this package implements classes and methods to perform survival analysis, and it is part of
the base R installation;

e impute: this library implements several methods to impute missing values in gene expression matrices
[11], and can be obtained from Bioconductor;

e MLInterfaces: this package provides a uniform interface to the many classification functions available
in R and can be obtained from Bioconductor;

e pamr: this library provides an R implementation of the Prediction Analysis for Microarray method
described by Tibshirani et al [I2] and can be obtained from Bioconductor;

e org.Hs.eg.db: this library contains Homo sapiens gene annotation and can be obtained from Biocon-
ductor;

http://luigimarchionni.org/breastTSP.html
http://luigimarchionni.org/breastTSP.html

e pROC: this package implements classes methods to perform Receiver Operator Curve (ROC) analysis
[13], and can be obtained from CRAN;

e caret: this library implements miscellaneous functions for training and plotting classification and re-
gression models, and can be obtained from CRAN;

e xtable: this package allows to output nicely formatted tables in IATgXand can be obtained from CRAN;

e ¢1071: this package contains miscellaneous statistial and graphical functions required by the caret
package and can be obtained from CRAN;

e gplots: this library contains the read.x1ls function enabling to directly read excel spreadsheet into an
Rsession and can be obtained from CRAN;

e 1lsa: this package contains cosine function to compute the cosine similarity between two vectors, and
can be obtained from CRAN;

The chunks of R code below can be used to obtain and install all necessary packages from CRAN, Bioconductor,
or the website repository accompanying this manuscript.

Installing from Bioconductor:

###Source the biocLite.R script from Bioconductor
source ("http://bioconductor.org/biocLite.R")
###Get the list of available packages
installedPckgs <- installed.packages() [, "Package"]
###Define the list of desired libraries
pckgListBIOC <- c("impute", "org.Hs.eg.db", "MLInterfaces", "pamr")
###Load the packages, install them from Bioconductor if needed
for (pckg in pckgListBIOC) {
if (! pckg /inj, installedPckgs) biocLite (pckg)
require (pckg, character.only=TRUE)

>
>
>
>
>
>
>
>

}
Installing from CRAN:

###Define the repository

nciRepos <- "http://watson.nci.nih.gov/cran_mirror"

###Define the list of desired libraries

pckgListCRAN <- c("pROC", "caret", "xtable", "gplots", "e1071", "lsa")

###Load the packages, install them from CRAN if needed

for (pckg in pckgListCRAN) {
if (! pckg /inj, installedPckgs) install.packages(pckg, repos=nciRepos)
require(pckg, character.only=TRUE)

vV V.V Vv Vv Vv

}

Installing from the manuscript website:

###Define the repository

marchionniRepos <- "http://luigimarchionni.org/software/"

###Define the list of desired libraries

pckgListMS <- c("switchBox")

###Load the packages, install them from Marchionni's repository

for (pckg in pckgListMS) {
if (! pckg /inj installedPckgs) install.packages(pckg, repos=marchionniRepos)
require(pckg, character.only=TRUE)

>
>
>
>
>
>

3 Gene expression and clinical data preparation

3.1 The mammaPrintData R-Bioconductor package

The original data sets used to redevelop [3] the 70-gene prognostic signature into the MammaPrint assays,
and then to validate it [4], can be obtained from the ArrayExpress database [§]:

e http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-77
e http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-115

These two gene expression series account for clinical information, microarray features annotation, and complete
unprocessed raw gene expression data. The pre-processed, normalized, and summarized values used by the
authors in their studies were not included in the ArrayExpress submission, hence data pre-processsing is
required prior any analysis can be performed. For our study we have therefore retrieved the E-TABM-115
and E-TABM-77 series from ArrayExpress, and we have assembled the data into the mammaPrintData R-
Bioconductor package. This R library accounts for expression values, clinical information, and microarray
features annotation for the 1.9k MammaPrint microarray, including the mapping information for the 231-gene
originally associated with patient’s outcome, and for the 70-gene breast cancer progostic signature (see the
mammaPrintData package vignette for details). Since a two-colors dye-swap design was used in these two
studies [3, 4], our experiment data R-Bioconductor package contains four RGList-Class instances, two for
each cohort, and two for each dye-swap replicate, as follows:

e glasRGcyb: the RGList-Class instance for the hybridizations of the Glas’ cohort in which the informa-
tion provided was associated with the with Cy5 channel;

e glasRGcy3: the RGList-Class instance for the hybridizations of the Glas’ cohort in which the informa-
tion provided was associated with the Cy3 channel;

e buyseRGcy5: the RGList-Class instance for the hybridizations of the Buyse’s cohort in which the
reference RNA was labeled with Cyb;

e buyseRGcy3: the RGList-Class instance for the hybridizations of the Buyse’s cohort in which the
reference RNA was labeled with Cy3;

The mammaPrintData package vignette provides all the links to the original data sources, as well as the complete
R code used to assemble the RGList-Class objects contained in the package. This Rlibrary will be made
available with the next Bioconductorrelease, and can be currently dowloaded and installed from the website
accompanying this manuscript (http://luigimarchionni.org/breastTSP.html), as shown below:

> ###0btain and install the data package from the manuscript website

> marchionniRepos <- "http://luigimarchionni.org/software/"
> install.packages("mammaPrintData", repos=marchionniRepos)

The content of the mammaPrintData R-Bioconductor package is shown in Table

http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-77
http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-115
http://luigimarchionni.org/breastTSP.html

Table 1: The mammaPrintData package content

Package Item Title

mammaPrintData buyseRGcey3 (buyseRG) Gene expression, annotations and clinical information for the
Buyse cohort: set of dye-swap hybridizations in which the ref-
erence RNA was labeled with Cy3

mammaPrintData buyseRGcey5 (buyseRG) Gene expression, annotations and clinical information for the
Buyse cohort: set of dye-swap hybridizations in which the ref-
erence RNA was labeled with Cy5

mammaPrintData glasRGey3 (glasRG) Gene expression, annotations and clinical information for the
Glas cohort: set of dye-swap hybridizations in which the infor-
mation was associated with RNA samples labeled with Cy3

mammaPrintData glasRGeyb (glasRG) Gene expression, annotations and clinical information for the
Glas cohort: set of dye-swap hybridizations in which the infor-
mation was associated with RNA samples labeled with Cy5

3.2 Glas cohort: ArrayExpress “E-TABM-115” series

The data set used in the Glas study [3] combined a large proportion of cases from the original van’t Veer and
Van de Vijver cohorts. This data set was used for the implementation of the original 70-gene breast cancer
prognostic signature into the MammaPrint assay. In particular this cohort accounts for 162 unique breast
cancer cases, which were analyzed using a dye-swap two-colors design, comparing each sample against the
same reference RNA (162 samples * 2 channels * 2 dye-swap hybridizations = 648 total data points).

> ###Load the Glas cohort data

> data(glasRG)

> ###Dimensions of the RGList objects for each set of swapped hybridizations
> dim(glasRGcyb)

[1] 1900 162
> dim(glasRGcy3)

[1] 1900 162

3.2.1 Dye-swap hybridization pairs identification

As described in details in the mammaPrintData package vignette, the phenotypic and clinical information
associated with the ArrayExpress “E-TABM-115" series available on Apr 08, 2013 was incomplete. The SDRF
annotation table, in fact, did not account for a total of 648 rows, one for each hybridization channel as
expected (162 samples for 2 channels, for 2 replicated dye-swap hybridizations), but only for 324 rows, one for
each hybridization result file. Based on this SDRF annotation table it was possible to associate the clinical
information provided only for a half of the results files, corresponding to one set of the dye-swap hybridization
technical replicates performed. For the second set of replicates only the reference RNA information was
available. Such phenotypic information, as it is stored in the RGList-class instances of the mammaPrintData
package is shown below.

> ###Phenotypic information provided with the E-TABM-115 serries
> colnames (glasRGcy3$targets)

[1] "Source.Name"

[2] "Characteristics.EventDistantMetastases"

[3] "Characteristics.EventDeath"

[4] "Characteristics.PeriodTillDevelopmentOfDistantMetastases.years"
[5] "Characteristics.OverallSurvival"

[6] "Sample.Name"

[7] "Extract.Name"

[8] "Labeled.Extract.Name"

[9] "Label"

[10] "Hybridization.Name"

[11] "Factor.Value.overall_survival"

[12] "Factor.Value.Event_Death"

[13] "Factor.Value.Event_distant_metastases'
[14] "Factor.Value.Time_to_development_of_distant_metastases"
[15] "Scan.Name"

[16] "Array.Data.File"

[17] "putativeCohort"

The R code chunk below shows the phenotypic information associated with the first set of dye-swap hybridiza-
tions, which is stored in the glasRGcy3$targets object, and correspond to the clinical information for the
patients analyzed in the Glas study:

> ###Selection of column containing clinical information: i.e. overall survival
> colSelection <- c("Source.Name", "Factor.Value.overall_survival", "Scan.Name')
> ###The phenotypic information for 4 hybridizations from the FIRST dye-swap set
> head(glasRGcy3$targets[, colSelection], n=4)

Source.Name Factor.Value.overall_survival Scan.Name
86 MRP reference pool US22502555_967_2_397
4 MRP reference pool US22502555_953_2_366
67 MRP reference pool US22502555_952_2_344
122 MRP reference pool US22502555_951_2_339

On the contrary the R code chunk below shows the phenotypic information associated with the second set of
dye-swap hybridizations, which is stored in the glasRGcy5$targets object, and correspond to the information
about the “MRP” reference RNA used in the study. For this reason the correspondence between patients’
clinical information and the result files for this second set of hybridizations and is unknown.

> ###The phenotypic information for 4 hybridizations from the SECOND dye-swap set
> head(glasRGcyb$targets[, colSelection], n=4)

Source.Name Factor.Value.overall_survival Scan.Name
258 9671397 8.77 years US22502555_967_1_397
81 9531366 17.15 years US22502555_953_1_366
55 9521344 6.87 years US22502555_952_1_344
121 9511339 16.59 years US22502555_951_1_339

In order to analyze the complete Glas data set it was necessary ot link together each pair of hybridization result
files corresponding to a dye-swap pair of technical replicates. For the present study this mapping information
was kindly provided by Dr. Glas, the corresponding author of the original manuscript [3].

Processed gene expression data using such information are available from the website accompanying this
manuscript (http://luigimarchionni.org/breastTSP.html).

> ###Load the gdata library to read Excel spreadsheets
> require(gdata)
> ###Read in mapping informaiton spreadsheet file obtained from Dr Glas
> localFiles <- list.files("./localFiles/")
> if ("AgendiaExeriment overview_E_TAB_115.x1sx" J}inj, localFiles) {
mapInfo <- read.xls("./localFiles/AgendiaExeriment overview_E_TAB_115.xIsx",
header=TRUE, stringsAsFactors=FALSE)

} else {
mapInfo <- "Obtain mapping information from Agendia or use the provided normalized data."
print (mapInfo)

}

http://luigimarchionni.org/breastTSP.html

The chunk of R output below shows an excerpt from the mapInfo data.frame, in which each pair of hy-
bridizations constituting a dye-swap pair is clearly identified.

> ###Dimensions of the mapping information data.frame
> dim(mapInfo)

[1] 324 4

> ###Show the first 4 rows of the mapping information data.frame
> head (mapInfo, n=4)

Hybridization Cy5s Cy3 polarity
1 US22502555_16011886011186_S01_1_1.txt 1118611 MRP +
2 US22502555_16011886011186_S01_1_2.txt MRP 1118611 -
3 US22502555_16011886011186_S01_1_3.txt 1118613 MRP +
4 US22502555_16011886011186_501_1_4.txt MRP 1118613 -

The R code chunk below was used to count the number of times the “MRP” reference RNA was hybridized in
each channel (162 pairs of dys-swap hibridizations).

> ###Count channel information versus reference RNA
> table(ReferenceRNAinCy3 = mapInfo$Cy3 7inj, "MRP", ReferenceRNAinCy5 = mapInfo$Cy5 7,inj, "MRP")

ReferenceRNAinCy5
ReferenceRNAinCy3 FALSE TRUE
FALSE 2 160
TRUE 162 0

> ###Two Cy5 values in "mapInfo" are equal to empty strings rather thant "MRP"
> mapInfo$Cy5[! mapInfo$Cy3 7inj, "MRP" & ! mapInfo$Cy5 Jinj, "MRP"]

[1] mwmwoonn

> ###Assign the reference RNA "MRP" value to such empty strings

> mapInfo$Cy5[! mapInfo$Cy3 Jinj, "MRP" & ! mapInfo$Cy5 Jinj, "MRP"] <- "MRP"

> ###Re-count channel information versus reference RNA

> table(ReferenceRNAinCy3 = mapInfo$Cy3 7inj, "MRP", ReferenceRNAinCy5 = mapInfo$Cy5 Jinj, "MRP")

ReferenceRNAinCy5
ReferenceRNAinCy3 FALSE TRUE
FALSE 0 162
TRUE 162 0

Using this mapping information contained in the mapInfo data.frame we could eventually link the pheno-
typic information contained in the glasRGcy5$targets object to the reference RNA information present in
glasRGey3$targets object, and viceversa, reconsituting a complete dye-swap pair of hybridizations, as shown
below.

We first compared and counted the file names contained in the mapInfo, glasRGecy3$targets, and Robject-
glasRGeyb$targets objects, as follows:

> ###Compare and count the file names in mapInfo, glasRGcy3$targets, and glasRGcy5$targets
> table(FirstSet=mapInfo$Hybridization Jin), glasRGcy3$targets$Array.Data.File,
SecondSet=mapInfo$Hybridization Jinj, glasRGcyb$targets$Array.Data.File)

SecondSet
FirstSet FALSE TRUE
FALSE 0 162
TRUE 162 0

We then combined the dye-swap mapping information with the phenotypic information for both the first and
second sets of hybridizations, as follows:

> ###Combine mapInfo and phenotypic information for the FIRST set of hybridizations

> newTargetsCy3 <- merge(glasRGcy3$targets, mapInfo, sort=FALSE,
by.x="Array.Data.File", by.y="Hybridization")

> ###Combine mapInfo and phenotypic information for the SECONDset of hybridizations

> newTargetsCy5 <- merge(glasRGcy5$targets, mapInfo, sort=FALSE,
by.x="Array.Data.File", by.y="Hybridization")

We subsequently combined together the mapped phenotypic information obtained from both the first and
second sets of hybridizations, as follows:

> ###Add phenotypic information from the FIRST to the SECOND set of hybridizations
> newTargetsCy3Cy5 <- merge(newTargetsCy3, newTargetsCy5 , sort=FALSE,

by.x="Cy3", by.y="Cy5", suffixes=c(".Cy3", ".Cy5"))
> ###Add phenotypic information from the SECOND to the FIRST set of hybridizations
> newTargetsCy5Cy3 <- merge(newTargetsCy5, newTargetsCy3 , sort=FALSE,

by.x="Cy5", by.y="Cy3", suffixes=c(".Cy5", ".Cy3"))

We hence simplified these phenotypic tables by keeping only the columns carrying non-redundant information,
as follows:

> ###Define a function to identify columns carrying non redundant information

> keepRelevant <- function(x) length(unique(x)) >1

> ###Keep only the columns carrying information: FIRST set of hybridizations

> newTargetsCy3Cy5 <- newTargetsCy3Cy5[, apply(newTargetsCy3Cy5, 2, keepRelevant)]

> ###Keep only the columns carrying information: SECOND set of hybridizations

> newTargetsCy5Cy3 <- newTargetsCy5Cy3[, apply(newTargetsCy5Cy3, 2, keepRelevant)]

We finally updated the RGList-Class instances for both the first and second sets of hybridizations by adding
the mapped phenotypic information, as follows:
> ###Assign the merged object newTargetsCy3Cy5 to glasRGcy3: FIRST set of hybridizations
> if (all(glasRGcy3$targets$Array.Data.File == newTargetsCy3Cy5$targets$Array.Data.File.Cy3)) {
glasRGecy3$targets <- newTargetsCy3Cyb

print ("Updating the target information")
}

[1] "Updating the target information"

> ###Assign the merged object newTargetsCy5Cy3 to glasRGcy5: SECOND set of hybridizations

> if (all(glasRGcyb$targets$Array.Data.File == newTargetsCy5Cy3$targets$Array.Data.File.Cy5)) {
glasRGecy5$targets <- newTargetsCy5Cy3
print("Updating the target information")

}

[1] "Updating the target information"

3.2.2 Gene expression correction and summarization

Once the two sets of dye-swap hybridizations were combined together, we could finally pre-process, normalize,
and summarize the gene expression data contained in the mammaPrintData package, as described below.
To this end we applied the “Rosetta error model” implemented by Weng et al. [I4], as described in the
original manuscript by Glas and colleagues [3]. This procedure enabled to compute an overall logl0 expressio
ratio for each microarray feature, using the error-weighted mean calculated over replicated identical probes,
as implemented by Weng and colleagues in equation number 16, section 3.1 (“Error-weighted replication

combining”) [14]:

_ Do wiTg
T ==t
2o Wi

10

Where:
1

2
(o=
Tq

w; =

Assuming that z; is the measured log ratio, and Jgi is the measured log ration error, and N the numbed of
replicates.

In the present study the log ratio measurements and errors were directly extracted from the raw data files
generated by the Agilent Feature Extraction software, and dowloaded from the ArrayExpress data base (see
vignette in the mammaPrintData package for details). The chunk of R code below shows the correctLogRatio
function, which implements the method above, and was used to correct and summarize the log ratio for each
probe on the MammaPrint 1.9k microarray.

> ###Function correcting and summarizing log ratios based on tapply() over repeated measurements
> logRatioCorrect <- function(x, y, z) {
x <- tapply(X=x, INDEX=z, FUN=function(x) x, simplify=FALSE)
y <- tapply(X=y, INDEX=z, FUN=function(x) x, simplify=FALSE)
mapply(x, y, FUN=function(x, y) {
w<-1/y2
sum(x * w) / sum(w)
r)
}

The chunk of R code below shows the normalization of the first set of hybridizations, using probe names to
identifiy repeated measurements:

> ###Turn log ratios in a numeric matrix and then turn to a data.frame to use mapply()

> logRat <- apply(glasRGcy3$logRatio, 2, as.numeric)

> logRat <- as.data.frame(logRat)

> ###Turn log ratios in a numeric matrix and then turn to a data.frame to use mapply()

> logRatError <- apply(glasRGcy3$logRatioError, 2, as.numeric)

> logRatError <- as.data.frame(logRatError)

> ###Get probe names to be used as INDEX by tapply

> myIndexGenes <- paste(glasRGcy3$genes$Comment . AEReporterName,
glasRGcy5$genes$Reporter.Database.Entry.unigene, sep="_")

> myIndexGenes <- gsub("_$", "", myIndexGenes)

> ###Correct and Average overprobe names for the FIRST set of hybridizations

> matCy3 <- mapply(x=logRat, y= logRatError, MoreArgs=list(z=myIndexGenes), FUN=logRatioCorrect)

The chunk of R code below shows the normalization of the second set of hybridizations, using probe names
to identifiy repeated measurements:

> ###Turn log ratios in a numeric matrix and then turn to a data.frame to use mapply()

> logRat <- apply(glasRGcyb5%logRatio, 2, as.numeric)

> logRat <- as.data.frame(logRat)

> ###Turn log ratios in a numeric matrix and then turn to a data.frame to use mapply()

> logRatError <- apply(glasRGcy5$logRatioError, 2, as.numeric)

> logRatError <- as.data.frame(logRatError)

> ###Get probe names to be used as INDEX by tapply

> myIndexGenes <- paste(glasRGcyb$genes$Comment.AEReporterName,
glasRGcy5$genes$Reporter.Database.Entry.unigene, sep="_")

> myIndexGenes <- gsub("_$", "", myIndexGenes)

> ###Correct and Average overprobe names for the SECOND set of hybridizations

> matCy5 <- mapply(x=logRat, y= logRatError, MoreArgs=list(z=myIndexGenes), FUN=logRatioCorrect)

The chunk of R code below was used to generate a non-redundant data.frame containing the annotation for
the unique microarray features of the MammaPrint 1.9k microarray (first set of hybridizations).

11

> ###Get the unique gene annotation for the FIRST set of hybridizations
> myIndexGenes <- paste(glasRGcy3$genes$Comment.AEReporterName,
glasRGcy3$genes$Reporter.Database.Entry.unigene, sep="_")
> myIndexGenes <- gsub("_$", "", myIndexGenes)
gnsAnnCy3 <- sapply(glasRGcy3$genes, function(x,y) {
tapply (X=x, INDEX=y, FUN=function(x) x[1]) },
y=myIndexGenes)
###Process as data.frame
gnsAnnCy3 <- as.data.frame(gnsAnnCy3, stringsAsFactors=FALSE)
gnsAnnCy3$genes231 <- as.logical (gnsAnnCy3$genes231)
gnsAnnCy3$genes70 <- as.logical(gnsAnnCy3$genes70)
gnsAnnCy3$gns231Cors <- as.numeric(gnsAnnCy3$gns231Cors)
###Remove microarray layout information
out <- unlist(lapply(c("Row","Column"), grep, colnames(gnsAnnCy3)))
gnsAnnCy3 <- gnsAnnCy3[, - out]

v

V VVVVVVYV

The chunk of R code below was used check the exact correspondence between the rows of the annotation table
and the gene expression matrix (first set of hybridizations):

> ###Check correspondance between annotation and overall expression
> all(rownames (gnsAnnCy3) == rownames (matCy3))

[1] TRUE

The chunk of R code below was used to generate a non-redundant data.frame containing the annotation for
the unique microarray features of the MammaPrint microarray (second set of hybridizations).

> ###Get the unique gene annotation for the SECOND set of hybridizations
> myIndexGenes <- paste(glasRGcyb5$genes$Comment . AEReporterName,
glasRGcy5$genes$Reporter.Database.Entry.unigene, sep="_")

> myIndexGenes <- gsub("_$", "", myIndexGenes)
> gnsAnnCy5 <- sapply(glasRGcy5$genes, function(x,y) {

tapply (X=x, INDEX=y, FUN=function(x) x[1]) },

y=myIndexGenes)

> ###Process as data.frame
> gnsAnnCy5 <- as.data.frame(gnsAnnCy5, stringsAsFactors=FALSE)
> gnsAnnCy5$genes231 <- as.logical (gnsAnnCy5%genes231)
> gnsAnnCy5%genes70 <- as.logical (gnsAnnCy5%genes70)
> gnsAnnCy5$gns231Cors <- as.numeric(gnsAnnCy5$gns231Cors)
> ###Remove microarray layout information
> out <- unlist(lapply(c("Row","Column"), grep, colnames(gnsAnnCy5)))
> gnsAnnCy5 <- gnsAnnCy5[, - out]

The chunk of R code below was used check the exact correspondence between the rows of the annotation table
and the gene expression matrix (second set of hybridizations):

> ###Check correspondance between annotation and overall expression
> all(rownames (gnsAnnCy5) == rownames (matCy5))

[1] TRUE

The chunk of R code below was used to compare the non-redundant data.frames corresponding to each set of
dye-swap hybridizations and generate a unique final annotation data.frame.

> ###Compare the two annotation and keep just one data.frame if identical
> if (all(gnsAnnCy3 == gnsAnnCy5, na.rm=TRUE)) {

gnsAnn <- gnsAnnCy3

rm(gnsAnnCy3, gnsAnnCy5)

print("Creating the final annotation data.frame")

}

[1] "Creating the final annotation data.frame"

12

The chunk of R code below was used to combine the corrected and summarized log ratios from each set
of dye-swap hybridizations in a unique overall measurement. Since the method originally used to combine
the two dye-swap sets was not explicitly described in the original manuscript by Glas and colleagues [3],
we used the arithmetic mean between one set of measurements and the inverse of the other set. The final
summarized ratio will express the relative change in expression between cancer (numerator) and the reference
RNA (denominator). In the following R code chunk multiplying by —1 the log ratio gene expression matrix
is equivalent to flippling it. Note that we inverted the matCy3 matrix, since it corresponded to the dye-swap
set in which cancer samples were labeled with Cy3.

> ###Combine the summarized log ratio from each set of hybridizarions
> ###Note that we are flipping matCy3
> matCy3Cy5 <- (-1*matCy3 + matCy5)/2

The chunks of R code below were used to assemble all processed phenotypic information, the normalized and
summarized gene expression data, and the non-redundant gene annotation information into an ExpressionSet
instance for later use in all our analyses.

Creation of a MIAME instance to store the experiment and study information:

###Require Biobase

require (Biobase)

###Retrieve the phenotypic information from one of the RGList intances

phenoGlas <- glasRGcy3$targets

###Create a MIAME instance

miame <- new("MIAME", name="GlasCohort",
pubMedIds="17074082",
title="ArrayExpress E-TABM-115: corrected log fold-change",
lab="Agendia",
url="http://www.ebi.ac.uk/arrayexpress/browse.html?keywords=E-TABM-115")

>
>
>
>
>
>

Creation of an AnnotatedDataFrame instance to store the phenotypic information:

> ###AnnotatedDataFrame for phenotypic data
> if (all(phenoGlas$Scan.Name.Cy3 == colnames (matCy3Cy5))) {
rownames (phenoGlas) <- colnames (matCy3Cy5)
phenoGlasData <- new("AnnotatedDataFrame", phenoGlas)
print("Creating new AnnotatedDataFrame for phenotypic information")
} else {
print ("Check sample order of phenotypic information")

}

[1] "Creating new AnnotatedDataFrame for phenotypic information"

Creation of an AnnotatedDataFrame instance to store the annotation information:

> ###AnnotatedDataFrame for annotation data
> gnsAnn <- as.data.frame(gnsAnn, stringsAsFactors=FALSE)
> featureData <- new("AnnotatedDataFrame", gnsAnn)

Creation of the final glasEset ExpressionSet instance:

> ###Create the ExpressionSet

> glasEset <- new("ExpressionSet",
phenoData = phenoGlasData, featureData = featureData,
experimentData = miame, exprs = matCy3Cy5)

> ###Save for later use

> save(glasEset, file="objs/glasEset.rda")

The glasEset ExpressionSet instance above is available from http://luigimarchionni.org/breastTSP.
html. Furthermore, such processed gene expression data is also provided NA the BMC Genomics web-

13

http://luigimarchionni.org/breastTSP.html
http://luigimarchionni.org/breastTSP.html

site.

3.3 Buyse cohort: ArrayExpress “E-TABM-77” series

The Buyse data set [4] comprises patients from an European multicenter study performed to independently
validate the MammaPrint assay. This cohort accounted a total of 307 patients, for 302 of which the complete
clinical information was available, and were therefore considered in the comparative analyses with the Adju-
vant! Online software [I5]. Similarly to the Glas cohort also in this case a dye-swap two-colors design was
adopted, comparing each sample against the same reference RNA (307 samples * 2 channels * 2 dye-swap
hybridizations = 1228 total data points). Below is shown the R code used to load the two Buyse cohort
RGList-class instances contained in the mammaPrintData package, one for each dye-swap set of hybridiza-

tions.
> ###Load the mammaPrintData library
> require (mammaPrintData)
> ###Load the Buyse cohort data
> data(buyseRG)
> ###Dimensions of the RGList objects
> dim(buyseRGcy5)

[1] 1900 307
> dim(buyseRGcy3)

[1] 1900 307

3.3.1 Gene expression correction and summarization

As described in details in the mammaPrintData package vignette, unlike the case of the “E-TABM-115” series,
the phenotypic information associated with the “E-TABM-77" ArrayExpress record available on Apr 08, 2013
was complete. The SDRF annotation table, in fact, accounted for 1228 total rows, one for each hybridization
channel (307 samples for 2 channels, for 2 replicated dye-swap hybridizations). Based on this information it
was possible to associate the clinical information for all the hybridizations that were performed withouth the
need of any additional mapping information.

The chunk of R code below shows the normalization of the first set of hybridization, using probe names to
identifiy repeated measurements:

###Turn log ratios in a numeric matrix and turn to data.frame

logRat <- apply(buyseRGcy3$logRatio, 2, as.numeric)

logRat <- as.data.frame(logRat)

###Turn log ratio errors in a numeric matrix and turn to data.frame

logRatError <- apply(buyseRGcy3$logRatioError, 2, as.numeric)

logRatError <- as.data.frame(logRatError)

###Get probe names to be used as INDEX by tapply

myIndexGenes <- paste (buyseRGcy3$genes$Comment . AEReporterName,
buyseRGcy3$genes$Reporter.Database.Entry.unigene, sep="_")

> myIndexGenes <- gsub("_$", "", myIndexGenes)

> ###Correct and Average overprobe names for the FIRST set of hybridizations

> matCy3 <- mapply(x=logRat, y= logRatError, MoreArgs=list(z=myIndexGenes), FUN=logRatioCorrect)

>
>
>
>
>
>
>
>

The chunk of R code below shows the normalization of the second set of hybridization, using probe names
to identifiy repeated measurements:

14

###Turn log ratios in a numeric matrix and turn to data.frame

logRat <- apply(buyseRGcy5%$logRatio, 2, as.numeric)

logRat <- as.data.frame(logRat)

###Turn log ratio errors in a numeric matrix and turn to data.frame

logRatError <- apply(buyseRGcy5%$logRatioError, 2, as.numeric)

logRatError <- as.data.frame(logRatError)

###Get probe names to be used as INDEX by tapply

myIndexGenes <- paste(buyseRGcy5$genes$Comment . AEReporterName,
buyseRGcyb$genes$Reporter.Database.Entry.unigene, sep="_")

myIndexGenes <- gsub("_$", "", myIndexGenes)

###Correct and Average overprobe names for the SECOND set of hybridizations

> matCy5 <- mapply(x=logRat, y= logRatError, MoreArgs=list(z=myIndexGenes), FUN=logRatioCorrect)

V V.V V VYV VYV

Vv Vv

The chunk of R code below was used to generate a non-redundant data.frame containing the annotation for
the unique microarray features of the MammaPrint microarray (first set of hybridizations).

> ###Get the unique gene annotation for the FIRST set of hybridizations
> myIndexGenes <- paste(buyseRGcy3$genes$Comment.AEReporterName,
buyseRGcy3$genes$Reporter.Database.Entry.unigene, sep="_")
> myIndexGenes <- gsub("_$", "", myIndexGenes)
> gnsAnnCy3 <- sapply(buyseRGcy3$genes, function(x,y) {
tapply (X=x, INDEX=y, FUN=function(x) x[1]) },
y=myIndexGenes)
###Process as data.frame
gnsAnnCy3 <- as.data.frame(gnsAnnCy3, stringsAsFactors=FALSE)
gnsAnnCy3$genes231 <- as.logical (gnsAnnCy3$genes231)
gnsAnnCy3$genes70 <- as.logical(gnsAnnCy3$genes70)
gnsAnnCy3$gns231Cors <- as.numeric(gnsAnnCy3$gns231Cors)
###Remove microarray layout information
out <- unlist(lapply(c("Row","Column"), grep, colnames(gnsAnnCy3)))
gnsAnnCy3 <- gnsAnnCy3[, - out]
###Check correspondance between annotation and overall expression
all(rownames (gnsAnnCy3) == rownames (matCy3))

V VVVVVVYVVYV

[1] TRUE

The chunk of R code below was used to generate a non-redundant data.frame containing the annotation for
the unique microarray features of the MammaPrint microarray (second set of hybridizations).

> ###Get the unique gene annotation for the SECOND set of hybridizations

> myIndexGenes <- paste(buyseRGcy5$genes$Comment . AEReporterName,
buyseRGcy5$genes$Reporter.Database.Entry.unigene, sep="_")

> myIndexGenes <- gsub("_$", "", myIndexGenes)

> gnsAnnCy5 <- sapply(buyseRGcy5$genes, function(x,y) {

tapply (X=x, INDEX=y, FUN=function(x) x[1]) },

y=buyseRGcyb5$genes$Comment . AEReporterName)
y=myIndexGenes)

###Process as data.frame

gnsAnnCy5 <- as.data.frame(gnsAnnCy5, stringsAsFactors=FALSE)

gnsAnnCy5$genes231 <- as.logical (gnsAnnCy5$genes231)

gnsAnnCy5$genes70 <- as.logical(gnsAnnCy5$genes70)

gnsAnnCy5$gns231Cors <- as.numeric (gnsAnnCy5$gns231Cors)

###Remove microarray layout information

out <- unlist(lapply(c("Row","Column"), grep, colnames(gnsAnnCy5)))

gnsAnnCy5 <- gnsAnnCy5[, - out]

###Check correspondance between annotation and overall expression

all (rownames (gnsAnnCy5) == rownames (matCy5))

V VVVVVVVVYV

[1] TRUE

The chunk of R code below was used to compare the non-redundant data.frames corresponding to each set of

15

dye-swap hybridizations and generate a unique final annotation data.frame.

> ###Compare the two annotation and keep just one data.frame if identical
> if (all(gnsAnnCy3 == gnsAnnCy5, na.rm=TRUE)) {

gnsAnn <- gnsAnnCy3

rm(gnsAnnCy3, gnsAnnCy5)

print("Creating the final annotation data.frame")

}

[1] "Creating the final annotation data.frame"

The chunk of R code below was used to combine the corrected and summarized log ratios from each set of
dye-swap hybridizations in a unique overall measurement. Since the method originally used to combine the
two sets was not explicitly described in the original manuscript by Buyse and colleagues [4], also in this case
we used the arithmetic mean between one set of measurements and the inverse of the other set. The final
summarized ratio will express the relative change in expression between cancer (numerator) and the reference
RNA (denominator). In the following R code chunk multiplying by —1 the log ratio gene expression matrix
is equivalent to flippling it. Note that we inverted the matCy5 matrix, since it corresponded to the dye-swap
set in which cancer samples were labeled with Cy3.

> ###Combine the summarized log ratio from each set of hybridizarions
> ###Note we are flipping matCyb
> matCy3Cy5 <- (-1*matCy5 + matCy3)/2

The chunks of R code below were used to assemble all processed phenotypic information, the normalized and
summarized gene expression data, and the non-redundant gene annotation information into an ExpressionSet
instance for later use in all our analyses.

To this end we firstly assembled a unique phenotypic information table by comparing and then combining the
information associated with each dye-swap set of hybrizations, as shown below.

> ###Check sample correspondance beween the two hybridization sets
> all(buyseRGcy5$targets$Cy3 == buyseRGcy3$targets$Cy5)

[1] TRUE

> ###Combine phenotypic information from the two RGList intances

> phenoBuyse <- cbind(stringsAsFactors=FALSE, Patients=buyseRGcy3$targets$Cy5,
buyseRGcy3$targets[!buyseRGecy3$targets 7inj, buyseRGcyb$targets])

> phenoBuyse <- merge(phenoBuyse, buyseRGcyb$targets, by.x="Patients", by.y="Cy3", sort=FALSE)

Creation of a MIAME instance to store the experiment and study information:

> ###Require Biobase

> require(Biobase)

> ###Create a MIAME instance

> miame <- new("MIAME", name="BuyseCohort",
pubMedIds="16954471",
title="ArrayExpress:E-TABM-77; corrected log fold-change",
lab="Agendia",
url="http://www.ebi.ac.uk/arrayexpress/browse.html?keywords=E-TABM-77")

Creation of an AnnotatedDataFrame instance to store the phenotypic information:

> ###AnnotatedDataFrame for phenotypic data

> if (all(phenoBuyse$Scan.Name.Cy5 == colnames (matCy3Cy5))) {
rownames (phenoBuyse) <- colnames(matCy3Cy5)
phenoBuyseData <- new("AnnotatedDataFrame", phenoBuyse)

}

Creation of an AnnotatedDataFrame instance to store the annotation information:

16

> ###AnnotatedDataFrame for annotation data
> gnsAnn <- as.data.frame(gnsAnn, stringsAsFactors=FALSE)
> featureData <- new("AnnotatedDataFrame", gnsAnn)

Creation of the final buyseEset ExpressionSet instance:

> ###Create the ExpressionSet

> buyseEset <- new("ExpressionSet",
phenoData = phenoBuyseData, featureData = featureData,
experimentData = miame, exprs = matCy3Cy5)

> ###Save for later use

> save(buyseEset, file="objs/buyseEset.rda")

The buyseEset ExpressionSet instance above is available from http://luigimarchionni.org/breastTSP.
html. Furthermore, such processed gene expression data is also provided NA the BMC Genomics web-
site.

3.4 End-point and prognostic groups selection

In the present study we have subset the gene expression data limiting our investigation to the 70-gene signature
only. Furthermore, similarly to what was done in the original study by van’t Veer and colleagues [I], we have
defined patients prognostic groups using the time to development of a distant metastasis as first recurrence
event as follows:

e “Low-risk” group: patients who remained disease free for at least 5 years;

e “High-risk” group: patients who developed a distant metastases within 5 years;

3.4.1 Training set: Glas cohort (E-TABM-115)

The complete Glas data set was originally used to implement the MammaPrint assay re-developing the 70-gene
prognostic signature on the new 1.9k microarray platform. This cohort accounts for a total 162 lymphnode
negative patients, including the 78 cases originally analyzed in the van’t Veer study [I] to develop the prognostic
signature, and additional patients from the Van de Vijver [2] study. We have used this cohort to train and
validate novel TSP-based prognostic predictors, reproducing the approach used in the original study. In
the following R code chunks is shown how to identify the microarray features corresponding to the 70-gene
signature, and select the cases to be used in the analyses.

Load the previously saved ExpressionSet instance for the Glas cohort:

> ###Load normalized and summarized data from Glas cohort
> load("objs/glasEset.rda")

Such processed gene expression data is also provided as “Additional data” within the compressed archive
available from the BMC Genomics website. Alternatively the processed gene expression data obtained can be
also dowloaded from the website accompanying this manuscript, as follows:

> ###Define the url for the ExpressionSet file from the website

> url <- "http://luigimarchionni.org/breastTSP/glasEset.rda"

> ###Loadthe ExpressionSet file from the website
> load(url)

Data set summary:

17

http://luigimarchionni.org/breastTSP.html
http://luigimarchionni.org/breastTSP.html

> ###Dimension of the ExpressionSet
> dim(glasEset)

Features Samples
1149 162

> ###Count metastases event by original data sets
> table(DataSet = pData(glasEset)$putativeCohort.Cy5,
MetastaticEvent = pData(glasEset)$FiveYearMetastasis)

MetastaticEvent
DataSet FALSE TRUE
putativeVantVeer 44 34

putativeVanDeVijver 72 12

The 70-gene prognostic signature comprises the top 70 microarray features showing the highest absolute
correlation with survival, as described in the supplemenatary section of the original van’t Veer study (Table
S2) [1]. However, out of these 70 genes only 69 could be mapped on the MammaPrint 1.9k platform using the
feature identifiers provided, as described in the mammaPrintData package vignette and showed below.

> ###Counting the 70-gene microarray features available on the new platform
> table(featureData(glasEset)$genes70)

FALSE TRUE
1079 70

> ###Create a logical vector to select the 70-gene prognostic signature genes
> select70geneGlas <- featureData(glasEset)$genes70

Subset the gene expression data limiting to the 70-gene microarray features:

> ###Subset the ExpressionSet: 70-gene signature only and all patients
> glasDataAll <- glasEset[select70geneGlas,]

Identification and selection of the patients of the Glas combined cohort (van’t Veer and Van de Vijver cases)
who developed a distant metastases as first recurrence event within five years, and of the patients who remained
disease free for at least five years.

> ###Subset the ExpressionSet: cases with metastasis within 5 years

> ###or disease free for at least 5 years

> glasCasesAll.ttm <- which(! is.na(pData(glasDataAll)$FiveYearMetastasis) & !
(pData(glasDataAl1)$0S < 5 & pData(glasDataAll)$TTMevent == 0))

> glasDataAll.ttm <- glasDataAll[, glasCasesAll.ttm]

> ###Define "Low-risk" and "High-risk" prognostic groups

> glasGroupAll.ttm <- (pData(glasDataAll.ttm)$FiveYearMetastasis)

> ###Set "Low-risk" == 1 and "High-risk" ==

> glasGroupAll.ttm <- (! glasGroupAll.ttm) * 1

The recurrence status summary for the Glas combined cohort is shown below. Four patients who did not
develop metastases and for which the reported overal survival (OS) was shorter than 5 years were excluded
from further analyses.

> ###Data set summary
> summary (pData(glasDataAll)$FiveYearMetastasis)

Mode FALSE TRUE NA's
logical 116 46 0

> ###Dimentions of the test set
> dim(glasDataAll.ttm)

Features Samples
70 158

18

> ###Excluded patients
> table(Metastasis = pData(glasDataAll)$FiveYearMetastasis,
"0S < 5" = pData(glasDataAll)$0S < 5 & pData(glasDataAll)$TTMevent == 0)

0s < 5
Metastasis FALSE TRUE
FALSE 112 4
TRUE 46 0

> ###Count "High-risk" and "Low-risk" patients in the test set
> table(glasGroupAll.ttm)

glasGroupAll.ttm
o 1
46 112

3.4.2 Test set: Buyse cohort (E-TABM-77)

The Buyse data set [4] comprises a total of 307 patients from a European multicenter study performed to
independently validate the MammaPrint assay. We therefore used this cohort to validate the novel TSP-based
prognostic predictors we developed using the Glas cohort (see above). In the following R code chunks is shown
how to identify the microarray features corresponding to the 70-gene signature, and select the cases to be
used in the analyses.

> ###Load normalized and summarized data from Buyse cohort
> load("objs/buyseEset.rda") #or load("buyseEsetFromUrl.rda")

Such processed gene expression data is also provided as “Additional data” within the compressed archive
available from the BMC Genomics website. Alternatively the processed gene expression data obtained can be
also dowloaded from the website accompanying this manuscript, as follows:

> ###Define the url for the ExpressionSet file from the website

> url <- "http://luigimarchionni.org/breastTSP/buyseEset.rda"

> ###Loadthe ExpressionSet file from the website
> load(url)

Data set summary:

> ###Dimension of the ExpressionSet
> dim(buyseEset)

Features Samples
1149 307

> ###Count metastases events
> table(MetastaticEvent = pData(buyseEset)$FiveYearRecurrence)

MetastaticEvent
FALSE TRUE
260 47

Identification of the microarray features corresponding to the 70-gene prognostic signature mapped on the
MammaPrint 1.9k platform:

> ###Counting the 70-gene microarray features available on the new platform
> table(featureData(buyseEset)$genes70)

FALSE TRUE
1079 70

19

> ###Logical vector to select the 70-gene prognostic signature genes
> select70geneBuyse <- featureData(buyseEset)$genes70

Subset the gene expression data limiting to the 70-gene microarray features:

> ###Subset the ExpressionSet: 70-gene signature only and all patients
> buyseDataAll <- buyseEset[select70geneBuyse,]

Identification and selection of the patients of the Buyse cohort developed a distant metastases as first recur-
rence event within five years, and of the patients who remained disease free for at least five years.

###Subset the ExpressionSet: all cases

buyseCasesAll.ttm <- which(! is.na(pData(buyseDataAll)$FiveYearRecurrence))
buyseDataAll.ttm <- buyseDataAll[, buyseCasesAll.ttm]

###Define "High-risk" and "Low-risk" prognostic groups

buyseGroupAll.ttm <- (pData(buyseDataAll.ttm)$FiveYearRecurrence)

###Set "Low-risk" == 1 and "High-risk" ==

buyseGroupAll.ttm <- (! buyseGroupAll.ttm) * 1

V V.V V Vv VYV

The recurrence status summary for the Buyse cohort is shown below.

> ###Data set summary
> summary (pData(buyseDataAll)$FiveYearRecurrence)

Mode FALSE TRUE NA's
logical 260 47 0

> ###Dimentions of the test set
> dim(buyseDataAll.ttm)

Features Samples
70 307

> ###Count "Low-risk" and "High-risk" patients in the test set
> table(buyseGroupAll.ttm)

buyseGroupAll.ttm
0o 1
47 260

3.5 Comparing the clinical information across studies and cohorts

We have compared the clinical information available for the Glas cohort with the one available for the original
van’t Veer and Van de Vijver cohorts, since the information provided with the “E-TABM-115" ArrayExpress
[8] series did not explicitly identify Glas data set samples membership to the original cohorts. To this end we

have assembled and used the seventyGeneData R-Bioconductor package, the content of which is shown in
Table 21

This package will be made with the next Bioconductor release and can be currently installed from the website
accompanying the manuscript as follows:

> ###0btain and install the data package from the manuscript website
> marchionniRepos <- "http://luigimarchionni.org/software/"
> install.packages ("seventyGeneData", repos=marchionniRepos)

20

Table 2: The seventyGeneData package content
Package Item Title
seventyGeneData vanDeVijver Gene expression, annotations and clinical information for the
Van de Vijver cohort
seventyGeneData vantVeer Gene expression, annotations and clinical information for the
van’t Veer cohort

The chunk of R code below shows how to load the ExpressionSet objects for the van’t Veer and Van de
Vijver cohorts from the seventyGeneData package:

> ###Load data from the van't Veer et al study

> data(vantVeer)

> data(vanDeVijver)

>

>

###Dimensions of the vantVeer and vanDeVijver ExpressionSets
dim(vantVeer)

Features Samples
24481 117

> dim(vanDeVijver)

Features Samples
24496 295

3.5.1 The van’t Veer cases in the Glas study

Below is the code to compare the phenotypic information for putative van’t Veer cases contained in the Glas
cohort to the information originally provided (for detailed informarmation see the mammaPrintData package
vignette). We firstly extracted the phenotypic information from the glasDataAll and vantVeer objects.

> ###Get phenotypes for putative van't Veer cases from the Glas study

> pGlasVtV <- pData(glasDataAll) [pData(glasDataAll)$putativeCohort.Cy5 == "putativeVantVeer",]
> dim(pGlasVtV)

[1] 78 27

> ###Get phenotypes for van't Veer cases from the original study (BRCA cases excluded)
> pVtV <- pData(vantVeer) [pData(vantVeer)$DataSetType != "BRCA",]
> dim(pVtV)

[1] 97 16
We subsequently compared such clinical and phenotypic information, including node status information, and
time to development of a distant metastasis, for the cases in common.

> ###Is the time to development of metastasis identical for the common cases?
> all(pGlasVtV$TTM 7inj round(pVtV$TTM,2))

[1] FALSE

> ###For which patients in the Glas study the time to metastases is different?
> checkGlasVtV <- which(! pGlasVtV$TTM Jinj, round(pVtV$TTM,2))
> ###For which patients in the van't Veer study the time to metastases is different?
> checkVtV <- which((!round(pVtV$TTM,2) 7inj, pGlasVtV$TTM)
& pVtV$DataSetType != "19samples")

In Table [3| below is shown the clinical information contained in the Glas study for the case with different
time to development of a metastasis as first recurrence event:

21

Table 3: Cases from the Glas study missing or with different clinical information in the van’t Veer study
Sample.Name.Cy5 TTM TTMevent OS OSevent

1181311 8.37 0.00 8.37 0.00
1118611 8.42 0.00 8.42 0.00
1181623 8.65 0.00 8.65 0.00
1193921 9.12 1.00 9.92 0.00
1181621 9.41 0.00 9.41 0.00
1197111 10.02 0.00 10.02 0.00
1118613 11.36 0.00 11.36 0.00
1194323 12.74 0.00 12.74 0.00
1197113 1277 0.00 12.77 0.00
1181413 14.26 0.00 14.26 0.00
1181411 14.82 0.00 14.82 0.00
1181323 15.35 0.00 15.35 0.00

In Table {]is shown the clinical information contained in the van’t Veer study for the case with different time
to development of a metastasis as first recurrence event:

Table 4: Cases from the van’t Veer study missing or with different clinical information in the Glas study
SampleName DataSetType TTM TTMevent followup.time.yr metastases age Brcal.mutation

Sample 20 greater_than 5y 5.10 0 5.10 0 34 0
Sample 15 greater_than 5y 5.23 0 5.23 0 46 0
Sample 19 greater_than 5y 5.72 0 5.72 0 48 0
Sample 2 greater_than 5y 6.44 0 6.44 0 44 0
Sample 18 greater_than 5y 7.41 0 7.41 0 32 0
Sample 16 greater_than_5y 8.39 0 8.39 0 49 0
Sample 21 greater_than 5y 10.54 0 10.54 0 39 0
Sample 3 greater_than 5y 10.66 0 10.66 0 41 0
Sample 33 greater_than 5y 11.46 O 11.46 0 52 0
Sample 5 greater_than 5y 11.98 0 11.98 0 48 0
Sample 1 greater_than 5y 12.53 0 12.53 0 43 0
Sample 25 greater_than 5y 13.42 0 13.42 0 45 0

As revealed by the comparison of Tables [3| and [4] above, the patients with different phenotypic information
were all metastasis free at the time of the original van’t Veer study, and showed longer time to of metastasis
development in the Glas data set. This is therefore compatible with an updated follow-up available for the
Glas study that was performed at a later time.

3.5.2 The Van de Vijver cases in the Glas study

Below is the R code used to compare the phenotypic information for the putative Van de Vijver cases contained
in the Glas cohort to the information originally provided (for detailed informarmation see the mammaPrintData
package vignette). To this end we first extracted the sample identifiers and the phenotypic information from
the glasDataAll and vanDeVijver objects.

> ###Get phenotypes for putative Van de Vijver cases from the Glas study
> pGlasVDV <- pData(glasDataAll) [pData(glasDataAll)$putativeCohort.Cy5 == "putativeVanDeVijver",]
> ###Extract the putative identifiers for the Van de Vijver cases
> glasVanDeViverIds <- as.numeric(gsub(".+_", "",
pGlasVDV$Scan. Name.Cy5 [pGlasVDV$putativeCohort.Cy5
== "putativeVanDeVijver"]))

\%

###Note that ID 397 is repeated twice
any (duplicated(glasVanDeViverIds))

\%

22

[1] TRUE
> glasVanDeViverIds[which(duplicated(glasVanDeViverIds))]
[1] 397

> ###Extract phenotypes for the putative Van de Vijver cases from the Glas study
> sel <- !duplicated(glasVanDeViverIds)

> pGlasVDV <- pGlasVDV[sel,]

> dim(pGlasVDV)

[1] 83 27

> glasVanDeViverIds <- glasVanDeViverlIds[sell]

> ###Get phenotypes for Van de Vijver cases from the study

> pVDVneg <- pData(vanDeVijver) [pData(vanDeVijver)$SampleID 7inj, glasVanDeViverIds,]
> dim(pVDVneg)

[1] 83 18

> ###Reorder by Identifiers
> pGlasVDV <- pGlasVDV[order (glasVanDeViverIds),]
> pVDVneg <- pVDVnegl[order (pVDVneg$SamplelD),]

We subsequently compared the clinical and phenotypic information, including node status information, overall
survival, and time to development of a distant metastasis, for the common cases.

> ###Is the overall survival identical for the common cases?
> all(pGlasVDV$0S == round (pVDVneg$0S,2))

[1] TRUE

> ###Is the time to development of metastasis identical for the common cases?
> all(pGlasVDV$TTM == round(pVDVneg$TTM,2))

[1] TRUE

> ###Is the overall survival events identical for the common cases?
> all(pGlasVDV$0Sevent == pVDVneg$OSevent)

[1] TRUE

> ###Is the time to development of metastasis identical for the common cases?
> all(pGlasVDV$TTMevent == pVDVneg$TTMevent)

[1] TRUE

> ###Count node status for patients from the Van de Vijver cohort
> table(pVDVneg$Posnodes)

n
83

As revealed by the output from the R code chunks above the clinical information provided with the Van de
Vijver and Glas studies is identical.

4 Prognostic predictor training

We have applied the Top-Scoring-Pair (TSP) algorithm [5 [6] to predict breast cancer prognosis using the
time to development of a metastasis as first recurrence event as our primary end-point. In particular we have
applied an extension of the TSP algorithm, the &~TSP method, which combines multiple TSP in a unique

23

classifier. To this end we have employed the Glas and Buyse cohorts [3], [4], which were respectively used to
implement and validate the MammaPrint assay, as described below.

4.1 K-TSP classifier development using the Glas data set

For training purposes we have applied the kTSP algorithm on the Glas data set [3], selecting the same
cases and using the same end-point of the original van’t Veer study [I]. In particular we have performed the
following analytical tasks:

1. Identification of the complete set of disjoint TSPs predicting recurrence using only the 70-gene signature
features.

2. Outcome prediction in the training set using combinations of an increasing k£ number of TSP.

3. Receiver Operating characteristic (ROC) curve analysis to select the minimal kTSP combination achiev-
ing the best prediction, as assessed by the Area Under Curve (AUC).

4. Selection of the best kTSP combination threshold to achieve at best sensitivity (possibly equal to 1),
and the best possible specificity;

It should be noted that the choice of restricting the learning process to the 70-gene signature is justified
by the fact that the other features present on the MammaPrint microarray are “housekeeeing” genes used
for normalization purposes, which do not change across samples and therefore do not carry any prognostic
information. Furthermore it must be also noted that for tuning model complexity we have used resubstitution
AUC, as opposed to a cross-validated AUC. This apporach works reasonably well for the TSP method,
which is not very prone to over-fitting, but might produce over-fitted and inferior prediction models for other
algorithms.

4.1.1 Definition of the k-TSP classifier training functions

The following R code chunks were used to train and test novel kTSP prognostic classifiers, using the van’t
Veer breast cancer cases of the Glas cohort and the 70-gene prognostic signature microarray features.

Loading the necessary R libraries:

###Require the switchBox library
require (switchBox)

###Require the caret library
require (caret)

###Require the pROC library
require (pROC)

vV V.V Vv Vv Vv

The following R code chunk was use to define a function for computing kTSP classification performance
results:

> ###Function to compute KSP classification performance using the caret library
> getKTSPperformance <- function(data, ktsp, group, ...) {
out <- table(KTSP.Classify(data, ktsp, ...), group)
out <- confusionMatrix(out)
out$overallAccuracy <- mean(out$byClass[c("Sensitivity", "Specificity")])
return (out)

}

The following R code chunk was use to define a function for computing kTSP classification ROC curves:

24

> ###Function to compute ROC and AUC for a k-TSP combination using the pROC library
> getKTSPauc <- function(k, data, group, thrMethod="local maximas",
ret=c("threshold", "sens", "spec", "npv", "ppv", "accuracy"), ...) {
ktsp <- KTSP.Train(data, group, k)
pred <- KTSP.Classify(data, ktsp, combineFunc = sum)
perf <- roc(!group, pred, ci=FALSE, plot=FALSE)
stats <- coords(perf, x=thrMethod, ret=ret, ...)
out <- list(auc=perf$auc, stats=stats)

}

The following R code chunk was use to define a function for plotting &~TSP classification AUC curves:

> ###Function to plot AUC classification performance using the pROC library
> plotKTSPauc <- function(k, data, group, ci=TRUE, ...) {

ktsp <- KTSP.Train(data, group, k)

pred<- KTSP.Classify(data, ktsp, combineFunc = sum)

rocOut <- roc(!group, pred, ...)

}

The following chunks of R code were used to train the &-TSP classifier using the van’t Veer cases from the Glas
cohort, the 70-gene set, and the occurrence of a metastasis within five years as end-point. Furthermore below
is shown how to compute ROC parameters for distinct combinations of increasing number of TSP.

###Create a vector to Select the van'tVeer cases contained in the Glas cohort

sel <- pData(glasDataAll.ttm)$putativeCohort.Cy5 7inj, c("putativeVantVeer")

###Create an named index vector for the TSP that can be obtained using only the 70-gene signature

k <- 2:35

names (k) <- paste("k", k, sep="")

###Computing LOCAL MAXIMAS ROC parameters for increasing k-TSP combinations

rocGlasLocalMax <- lapply(X=k, FUN=getKTSPauc, data=exprs(glasDataAll.ttm)[, sell,
group=glasGroupAll.ttm[sel])

###Extract AUC information

> glasBestAuc <- sapply(rocGlasLocalMax, function(x) x$auc)

V V.V V Vv VYV

v

4.1.2 k optimization based on resubstitution AUC

In Figure [I] AUC values from re-substitution for time to metastasis prediction using combinations of 2 to 35
TSPs.

25

AUC versus Number of TSP

k7
] e kit
k6 kio® k13 k15,k17,k19
o, KIS o1
ks kia 207, 5523 K25 157 k29 k31,k33

« k24 136"\ 35 K307 32 k34"

0.93 0.96

AUC
0.90

k_3k'4

0.87

0.84

2 4 6 8 10 14 18 22 26 30 34
Number of combined TSP

Figure 1: Area Under the Curve (AUC) from re-substitution for combining increasing numbers of TSPs in
the training set. AUC is shown on the y-axis, number of pairs k is shown on x-axis.

As shown in Figure [I| the AUC substantially increased by combining from 2 to 6-10 TSPs, while no further
improvement was achieved by adding additional TSPs to the predictive algorithm. We therefore focused our
further investigation on combinations of 6 to 10 T'SPs, with the goal of identifying the smallest combination
of TSPs achieving 100% sensitivity and the best specificity in the training set.

> ###Selection of the best and smallest k-TSP combination in terms of AUC

> goodK <- paste("k", 2:10, sep="")

> ###Extract ROC parameter for the selected k-TSP classifiers
> rocParams <- sapply(rocGlasLocalMax[goodK], function(x) x$stats)

In Table [5| are shown the ROC parameters computed on the training set using the kTSP classifier combining
the top first k=5 TSPs:

Table 5: ROC parameters for the & TSP classifier combining the top 5 TSPs

sensitivity specificity npv ppv accuracy
Threshold: 0.500 1.000 0.409 1.000 0.567 0.667
Threshold: 1.500 0.971 0.705 0.969 0.717 0.821
Threshold: 2.500 0.912 0.886 0.929 0.861 0.897
Threshold: 3.500 0.706 0.909 0.800 0.857 0.821
Threshold: 4.500 0.265 0.977 0.632 0.900 0.667
Threshold: Inf 0.000 1.000 0.564 NaN 0.564

In Table [6] are shown the ROC parameters computed on the training set using the kTSP classifier combining
the top first k=6 TSPs:

26

Table 6: ROC parameters for the & TSP classifier combining the top 6 TSPs

sensitivity specificity npv pPpVv accuracy
Threshold: 1.500 1.000 0.682 1.000 0.708 0.821
Threshold: 2.500 0.912 0.864 0.927 0.838 0.885
Threshold: 3.500 0.853 0.909 0.889 0.879 0.885
Threshold: 4.500 0.471 0.977 0.705 0.941 0.756
Threshold: 5.500 0.206 1.000 0.620 1.000 0.654

In Table [7] are shown the ROC parameters computed on the training set using the kTSP classifier combining
the top first k=7 TSPs:

Table 7: ROC parameters for the &TSP classifier combining the top 7 TSPs

sensitivity specificity npv ppv accuracy
Threshold: 1.500 1.000 0.659 1.000 0.694 0.808
Threshold: 2.500 0.971 0.864 0.974 0.846 0.910
Threshold: 3.500 0.853 0.909 0.889 0.879 0.885
Threshold: 4.500 0.618 0.977 0.768 0.955 0.821
Threshold: 6.500 0.147 1.000 0.603 1.000 0.628

In Table [§ are shown the ROC parameters computed on the training set using the kTSP classifier combining
the top first k=8 TSPs:

Table 8: ROC parameters for the &TSP classifier combining the top 8 TSPs

sensitivity specificity npv ppv accuracy
Threshold: 2.500 1.000 0.818 1.000 0.810 0.897
Threshold: 3.500 0.882 0.864 0.905 0.833 0.872
Threshold: 4.500 0.735 0.932 0.820 0.893 0.846
Threshold: 5.500 0.588 0.977 0.754 0.952 0.808
Threshold: 7.500 0.147 1.000 0.603 1.000 0.628

In Table [9 are shown the ROC parameters computed on the training set using the kTSP classifier combining
the top first k=9 TSPs:

Table 9: ROC parameters for the &TSP classifier combining the top 9 TSPs

sensitivity specificity npv ppv accuracy
Threshold: 2.500 1.000 0.773 1.000 0.773 0.872
Threshold: 3.500 0.912 0.864 0.927 0.838 0.885
Threshold: 4.500 0.765 0.909 0.833 0.867 0.846
Threshold: 5.500 0.735 0.955 0.824 0.926 0.859
Threshold: 6.500 0.500 0.977 0.717 0.944 0.769
Threshold: 8.500 0.147 1.000 0.603 1.000 0.628

As results from Tables [f] 6] [7] [8] and [9] a classifier combining the top 8 TSPs achieves a sensitivity of 1 and
a specificity of 0.81 in the training set, using a combination threshold of 2.5. This means that a patient is
classified at high risk of recurrence when any 2 individual TSPs out of 8 return a high risk prediction. In
Figure [2| below are shown the AUC curves for the &~TSP classifiers involving the top 8 T'SPs:

> ####Compute object to plot the ROC/AUC curves for all K-TSP combination

> howManyTSP <- 6:9
> kVec <- paste("k", howManyTSP, sep="")

27

> aucGlas <- lapply(k[kVec], plotKTSPauc,
data=exprs (glasDataAll.ttm) [, sel], group=glasGroupAll.ttm[sel])

Call:
roc.default (response = !group, predictor = pred)

Data: pred in 44 controls (!group FALSE) < 34 cases (!group TRUE).
Area under the curve: 0.9485

=] -
-
«© |
o
@ |
o
z
=
‘@
c
o
%]
<
(=)
N
=)
= k =6 - threshold = 2.5; specificity = 0.86; sensitivity = 0.91; accuracy = 0.88
=k =7 - threshold = 2.5; specificity = 0.86; sensitivity = 0.97; accuracy = 0.91
o =k = 8 - threshold = 2.5; specificity = 0.82; sensitivity = 1; accuracy = 0.9
o 7| - k =9 - threshold = 3.5; specificity = 0.86; sensitivity = 0.91; accuracy = 0.88
T T T T T T
1.0 0.8 0.6 0.4 0.2 0.0

Specificity

Figure 2: ROC curves for the best kTSP combinations involving 6 or 7 TSP in the training set.

The following chunk of R was used to train the & TSP classifier using the van’t Veer cases from the Glas
cohort, the 70-gene set, and the occurrence of a metastasis within five years as end-point.

> ###Trainin the 3-tsp classification within only the 70 genes: complete cohort
> ktspGlasVtV.ttm <- KTSP.Train(exprs(glasDataAll.ttm)[,sel], glasGroupAll.ttm[sel], 8)

The individual TSPs constituting the A-TSP classifier are shown below in Table

Table 10: Individual TSP contained in the final classifier.

ALIAS: Bad Gene ALIAS: Good Gene COR: Bad Gene COR: Good Gene ID: Bad Gene ID: Good Gene TSP score
GPR180 GNAZ -0.38 -0.40 Contig32185_RC GNAZ 0.60
OXCT1 RTN4RL1 -0.39 0.37 OXCT Contigd6223_ RC 0.55
HRASLS LGP2 -0.36 0.36 LOC57110 FLJ11354 0.53
DTL RFC4 -0.37 -0.37 L2DTL RFC4 0.53
MS4A7 0.36 -0.37 CFFM4 Contig40831_RC 0.53
IGFBP5 CDCA7 -0.36 -0.37 IGFBP5 Contigh5725_ RC 0.52
SERF1A UCHL5 -0.38 -0.37 SERF1A UCH37 0.51
MELK GSTM3 -0.37 0.38 KIAAO0175 GSTM3 0.51

The following R code chunk was used to define the &TSP classifier combination function using the identified

optimized 2.5 threshold (see Table 8 above):

28

> ###Combination function
> myCombineFunc <- function(x) sum(x) < 2.5

The following R code chunk was used to compute the k&-TSP classifier performance in the training set:

> ###Create a list to store the results

> ktspResults <- list()

> ###Get resubstitution accuracy: van't Veer cases from the Glas data set

> ktspResults$trainGlasVtV.ttm <- getKTSPperformance (exprs(glasDataAll.ttm)[, sel], ktspGlasVtV.ttm,
glasGroupAll.ttm[sel], combineFunc = myCombineFunc)

Below is shown the & TSP classifier performance on the training set:

> ###Show resubstitution accuracy
> ktspResults$trainGlasVtV.ttm$overallAccuracy

[1] 0.9090909
> ktspResults$trainGlasVtV.ttm

Confusion Matrix and Statistics

group

0 1
034 8
1 0 36

Accuracy : 0.8974
957 CI : (0.8079, 0.9547)
No Information Rate : 0.5641
P-Value [Acc > NIR] : 1.403e-10

Kappa : 0.7969
Mcnemar's Test P-Value : 0.01333

Sensitivity : 1.0000
Specificity : 0.8182

Pos Pred Value : 0.8095

Neg Pred Value : 1.0000
Prevalence : 0.4359

Detection Rate : 0.4359
Detection Prevalence : 0.5385

'Positive' Class : 0

In Figure[3are shown the prognostic group predictions obtained for each individual patient using each separate
TSP from Table [8l

29

1254423_BAD
1254421_BAD
1230623_BAD
1230621_BAD
1230123_BAD
1230121_BAD
1230113_BAD
1230111_BAD
1229913_BAD
1229911_BAD
1193823_BAD
1193821_BAD
1193813_BAD
1193811_BAD
1193723_BAD
1193721_BAD
1193713_BAD
1193623_BAD
1193621_BAD
1193613_BAD
1193611_BAD
1193523_BAD
1193521_BAD
1193513 BAD
1193423_BAD
1193421_BAD
1193413_BAD
1193411_BAD
1193321_BAD
1193313_BAD
1193311_BAD
1181613_BAD
1181611_BAD
1118623_BAD
1244423_GOOD
1244421_GOOD
1230613_GOOD
1230611_GOOD
1197223_GOOD
1197211_GOOD
1197121_GOOD
1197113_GOOD
1197111_GOOD
1194523_GOOD
119452.1_GOOD
1194511_GOOD
1194423_GOOD
1194421_GOOD
1194413_GOOD
1194323_GOOD
1194311_GOOD
1194223_GOOD
1194221_GOOD
1194123_GOOD
1194121_GOOD
1194113_GOOD
1194111_GOOD
1194023_GOOD
1194011_GOOD
1193921_GOOD
1193911_GOOD
1181723_GOOD
1181721_GOOD
1181713_GOOD
1181623_GOOD
1181621_GOOD
1181523_GOOD
1181521_GOOD
1181513_GOOD
1181511_GOOD
1181413_GOOD
1181411_GOOD
1181323_GOOD
1181311_GOOD
1181211_GOOD
1181121_GOOD
1118613_GOOD
1118611_GOOD

LGP2 < HRASLS
RTN4RL1 < OXCT1
GNAZ < GPR180
GSTM3 < MELK
RFC4 < DTL

CDCA7 < IGFBP5
UCHL5 < SERF1A

Contig40831_RC < MS4A7

Figure 3: Prognostic group predictions for each separate TSP from Table 8 The TSP are shown as columns,
while the distinct patients are represented on the rows. The pink color is used for classification in the “Bad”
prognostic group, while blue for “Good” prognostic group predictions.

30

4.2 Re-training of the MammaPrint classifier

The chunk of R code below shows the steps necessary to re-train the MammaPrint classifier. To this end we
need to compute the cosine correlation between each sample and the 70-gene mean expression profile of the

44

VVVVVVVVVVVYV

patients in the good prognostic group.

###Load the lsa library, which contains the the cosine correlation between two vectors
require (1sa)

###0btain mean expression profiles for the 70-gene signature

gns70profile <- exprs(glasDataAll.ttm)[, sel]

gns70profile <- gns70profile[, glasGroupAll.ttm[sel] == 1]

gns70profile <- apply(gns70profile, 1, mean, trim=0)

###Define the correlation threshold for the final classification

cosineCorThr <- 0.4

###Compute the cosine correlation for each patient

cosineCorsOnGlas <- apply(exprs(glasDataAll.ttm)[, sel], 2, cosine, y=gns70Oprofile)
###Classify each patient using the specified threshold

computedMammaPredOnGlas <- 1 * (cosineCorsOnGlas > cosineCorThr)

Below is shown the re-substitution performance using the re-trained MammaPrint classifier.

>

confusionMatrix (computedMammaPredOnGlas, glasGroupAll.ttm[sel])

Confusion Matrix and Statistics

Reference

Prediction 0 1

0 30 13
1 4 31

Accuracy : 0.7821
957 CI : (0.6741, 0.8676)
No Information Rate : 0.5641
P-Value [Acc > NIR] : 4.804e-05

Kappa : 0.5698
Mcnemar's Test P-Value : 0.05235

Sensitivity : 0.8824
Specificity : 0.7045

Pos Pred Value : 0.6977

Neg Pred Value : 0.8857
Prevalence : 0.4359

Detection Rate : 0.3846
Detection Prevalence : 0.5513

'Positive' Class : 0

It must be noted that there is a discrepancy in the predictions obtained with this apporach compared to what
was originally reported by Glas and colleagues [3]. In the case of the retrained classifier there are 13 rather
than 12 patients with a good prognosis who are misclassified and assigned to the poor prognostic group.
Possible explanations for these differencies are:

e The set of patients we have for training purposes might not be exactly the same employed in the original
manuscript (for an explanation see Section [3.5));

e The pre-processing strategy we have applied — derived from the description available in the original
manuscripts (see Section for details) — might differ slightly from what performed by Glas and

colleagues [3] [14];

31

e A combination of the two reasons above.

4.3 Development of other classifiers using the Glas data set

For training purposes we have also applied Linear Discriminant Analysis (LDA) and Prediction Analysis of
Microarray (PAM) on the Glas data set [3]. Also in this case we have selected and used the same patients
and end-point of the original van’t Veer study [1].

4.3.1 LDA classifier training

In the R code chunk below is shown how to train a prognostic classifier using LDA with the R-Bioconductor
package MLInterfaces. To this end the Glas and Buyse data must be combined in a unique ExpressionSet
instance, as show below.

###Load MLInterfaces
require (MLInterfaces)
###Combine Glas and Buyse expression data as required in MLInterfaces
df1 <- exprs(glasDataAll.ttm[, sel])
df2 <- exprs(buyseDataAll.ttm)
glasBuyseData.ttm <- merge(df1l, df2, by=0)
rownames (glasBuyseData.ttm) <- glasBuyseData.ttm[,1]
glasBuyseData.ttm <- as.matrix(glasBuyseData.ttm[,-1])
###Combine Glas and Buyse group information as required in MLInterfaces
glasBuyseGroup.ttm <- data.frame (group.ttm=factor(c(glasGroupAll.ttm[sel], buyseGroupAll.ttm)))
levels (glasBuyseGroup. ttm$group. ttm) <- c("Bad", "Good")
rownames (glasBuyseGroup.ttm) <- colnames(glasBuyseData.ttm)
###Create as new ExpressionSet
glasBuyseData.ttm <- ExpressionSet(glasBuyseData.ttm,
phenoData=AnnotatedDataFrame (glasBuyseGroup.ttm))
> ###Create a numeric index for Glas and Buyse samples in the merged data
> ###as required in MLInterfaces for training and validation purposes
> glassTrainInd <- 1:length(glasGroupAll.ttm[sel])
>
>

VVVVVVVVVVVVVYV

###LDA with MLInterfaces
lda.res <- MLearn(group.ttm~., glasBuyseData.ttm, .method=ldal, trainInd=glassTrainInd)

Below is shown the LDA classifier performance on the training set:
> confusionMatrix(as.table(t(confuMat(lda.res, "train"))))

Confusion Matrix and Statistics

given
predicted Bad Good
Bad 34 0
Good 0 44

Accuracy : 1
957, CI : (0.9538, 1)
No Information Rate : 0.5641
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 1
Mcnemar's Test P-Value : NA

Sensitivity : 1.0000
Specificity : 1.0000

32

Pos Pred Value : 1.0000

Neg Pred Value : 1.0000
Prevalence : 0.4359
Detection Rate : 0.4359
Detection Prevalence : 0.4359

'Positive' Class : Bad

4.3.2 PAM classifier training

In the R code chunk below is shown how to train a prognostic classifier using PAM with the R-Bioconductor
package pamr. Also in this case the data must be assembled to meet the package specifications.

> require (pamr)

> ###Prepare the data for PAM analysis

> symbols <- rownames (exprs(glasDataAll.ttm[, sell))

> pam.glasData <- list(x=exprs(glasDataAll.ttm[, sell), y=glasGroupAll.ttm[sel],
genenames=symbols, geneid=symbols)

> ###Train the PAM classifier

> pam.glasRes <- pamr.train(pam.glasData)

> ###Cross validation

> pam.glasResCV <- pamr.cv(pam.glasRes, pam.glasData)

> ###Predictions in the trainin set using all genes

> pam.glasResPred <- pamr.predict(pam.glasRes, pam.glasData$x, threshold=0)

In Figure [4] are shown the shrunken centroids from PAM.

Figure 4: Plot shows the PAM shrunken centroids in the training set (0 = “bad” prognostic group, 1 = “good”
prognostic group).

In Figure [5] the plots shows the cross-validation miss-classification error in the training set for decreasing

33

number of genes in the PAM classifier.
Number of genes

70 66 62 56 51 48 43 41 40 37 35 27 27 26 25 23 22 20 18 16 14 13 11 8 6 6 5 2 1 O

Misclassification Error
00 02 04 06 08

| |

e

st

e

e

e

e

s

e

0.0 05 1.0 15 2.0 25

Value of threshold

70 66 62 56 51 48 43 41 40 37 35 27 27 26 25 23 22 20 18 16 14 13 11 8 6 6 5 2 1 O

0.4
|

Misclassification Error

0.0
|

T T T T T T
0.0 05 1.0 15 2.0 25

Value of threshold

Figure 5: Cross-validation miss-classification error in the training set for decreasing number of genes in the
PAM classifier. (0 = “bad” prognostic group, 1 = “good” prognostic group).

Below is shown the PAM classifier performance on the training set:
> confusionMatrix(pam.glasResPred, glasGroupAll.ttm[sel])

Confusion Matrix and Statistics

Reference
Prediction 0 1

024 8

1 10 36

Accuracy : 0.7692
957, CI : (0.66, 0.8571)
No Information Rate : 0.5641
P-Value [Acc > NIR] : 0.0001308

Kappa : 0.5276
Mcnemar's Test P-Value : 0.8136637

Sensitivity : 0.7059
Specificity : 0.8182

Pos Pred Value : 0.7500

Neg Pred Value : 0.7826
Prevalence : 0.4359

Detection Rate : 0.3077
Detection Prevalence : 0.4103

'Positive' Class : 0

34

4.4 ROC-AUC analysis in the Glas cohort

The chunk of code below shows how to compute resubstitution estimates in the Glas cohort performing AUC
analysis comparing the &~TSP classifier, MammaPrint, and the other predictors.

> ###Assemble all predictions in a data.frame
> allPredictors <- data.frame (Response=glasGroupAll.ttm[sel], ###RESPONSE

KTSP=KTSP.Classify(exprs(glasDataAll.ttm) [,sel], #KTSP classifier

ktspGlasVtV.ttm, myCombineFunc), #Threshold maximizing sensitivity
retrainedMammaPrint=computedMammaPredOnGlas, #Retrained MammaPrint
PAM=-1 + as.numeric(pam.glasResPred), #PAM classifier (subtract 1 for levels consistency
LDA=-1 + as.numeric(trainPredictions(lda.res)), #LDA classifier (subtract 1 for levels c

stringsAsFactors=FALSE)

> ###In the pROC package the case are usually labeled with 1 and controls with O
> allPredictors <- lapply(allPredictors, function(x) abs(-1 + as.numeric(x)))

In Figure [6] are shown the resubstitution ROC and AUC results as obtained in the training set for the & TSP

predictors.

Call:

roc.default (response = resp, predictor = pred)

Data: pred in 44 controls (resp 0) < 34 cases (resp 1).

Area under the curve: 0.9091

Training Set
e
— -
- - —/’/
- - g
- -
-
-

o _| -

o -

< |

o
2
=
Q
n

< |

o

o

o

e

o

T T T T T
1.0 0.8 0.6 0.4 0.2 0.0
Specificity
—— AUC: 0.91;95% ClI: 0.85-0.97 : KTSP
- AUC: 0.79; 95% CI: 0.71 - 0.88 : retrainedMammaPrint
= AUC: 0.76;95% CI: 0.67 — 0.86 : PAM
= AUC: 1.00;95% CI: 1.00 -1.00: LDA

Figure 6: Resubstitution ROC-AUC analysis in the training set of samples (Glas cohort). The blue continuous
line depicts the ROC curve for the classification obtained obtained by using the dichotomized kTSP classifier
using the 2.5 threshold that maximized sensitivity (see Table . AUC along with 95% confidence intervals

are shown in the figure legend.

35

5 Prognostic predictor validation

5.1 Kk TSP classifier performance in the Buyse cohort

We have validated our kTSP classifier using the Buyse cohort and the same end-point used for training
(occurrence of a metastasis within five years as first recurrence event). The following R code chunk was used
to compute the prognostic prediction accuracy for the selected end-point in this test set, using all 307 cases
of the Buyse cohort.

> ###Get the validation accuracy in Buyse (all cases)

> ktspResults$testBuyseAll.ktspGlasVtV.ttm <- getKTSPperformance (exprs (buyseEset), ktspGlasVtV.ttm,

buyseGroupAll.ttm,
combineFunc = myCombineFunc)

The prognostic prediction accuracy of the kTSP classifier for the development of metastasis as first recurrence
within 5 years for all the 307 cases is shown below:

> ###Get the validation test accuracy: TTM by classifier from Glas (all cases)
> ktspResults$testBuyseAll.ktspGlasVtV. ttm$overallAccuracy

[1] 0.6920622
> ktspResults$testBuyseAll.ktspGlasVtV. ttm

Confusion Matrix and Statistics

group

o 1
0 43 138
1 4 122

Accuracy : 0.5375
957, CI : (0.4799, 0.5943)
No Information Rate : 0.8469
P-Value [Acc > NIR] : 1

Kappa : 0.1772
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.9149
Specificity : 0.4692

Pos Pred Value : 0.2376

Neg Pred Value : 0.9683
Prevalence : 0.1531

Detection Rate : 0.1401
Detection Prevalence : 0.5896

'Positive' Class : 0

In Figures [7][§] are shown the prognostic group predictions obtained for each individual patient using each
separate TSP from Table

36

4000261 BAI
A

N
S
3
S
I8Nt
NN
h
14
>
o

'
15
3
S
S
B3
2
o
>
S

] 4000324 BAI
400

>>5
o

i
> > >
&

>
oo

'S
15
15
333
SRR
3
I
>
S

N
15
153
3
3
S35
ot
ol
!
>
o

N
S
S
S
2
o
&
o
>
IS]

'
=]
8
8
5]
fa
bl
m
3
Sl

N
S
S
S
I
o
ot
o
>
o

>>
o

N
1=
=3
=3
R
SRRE
)
)
o
>
SIS}

)
o

N
G
dus
2> 3> 3>
s

4000268~GOOD
] 4000269-GOOD
4000270-GOOD
4000272-GOOD

000337-GOOD
000338-GOOD

] 4000340-GOOD
000341-GOOD
4000342-GOOD
000343-GOOD

] 4000344-GOOD
4000345-GOOD

4000437_GOOD

3350928 cE
£30p2500
w7030y
oy YITOVS
OSSN TR
nEETandeE
Foh5asE
55050952
5 UJLDE

Figure 7: Prognostic group predictions for each separate TSP from Table [The first set of 150 patients is
shown. The TSP are shown as columns, while the distinct patients are represented on the rows. The pink color
is used for classification in the “Bad” prognostic group, while blue for “Good” prognostic group predictions.

37

4000438_GOOD

4000492-GOOD

| 400055fGOOD
| 4000568-GOOD
4000569”GOOD
4000570-GOOD
1 4000572”GOOD
4000573-GOOD
1 4000574-GOOD
1 4000575-GOOD
4000576-GOOD
4000578-GOOD

1000591-GOOD
1 4000592-GOOD
1000594-GOOD
1 4000599-GOOD
1000600_GOOD
1 4000601-GOOD
4000602_GOOD
1000603-GOOD
1 4000604~ GOOD
1000605-GOOD

4000619”GOOD
4000620-GOOD
4000623_GOOD

000643-GOOD
4000644-GOOD
] 4000676-GOOD
4000677-GOOD
] 4000678-GOOD
4000680-GOOD

000681-GOOD

14000721 GOOD

RC < MS4A7
UCHLS < SERF1A
LGP2 < HRASLS
RFC4 < DTL
CDCAT7 < IGFBP5
RTN4RL1 < OXCT1

GSTM3 < MELK

GNAZ < GPR180

Figure 8: Prognostic group predictions for each separate TSP from Table[8] The second set of 157 patients is
shown. The TSP are shown as columns, while the distinct patients are represented on the rows. The pink color
is used for classification in the “Bad” prognostic group, while blue for “Good” prognostic group predictions.

38

5.2 MammaPrint assay performance in the Buyse cohort
5.2.1 Reported MammaPrint predictions

We have also evaluated the performance of the MammaPrint assay using the prediction information provided
with the ArrayExpress “E-TABM-77" series for the Buyse cohort. The following R code chunk was used to
compute the prediction accuracy for the selected end-point in the Buyse cohort, using all 307 cases.

> ###Extract and format the MammaPrint prediction results

> mammaPrintPredictionAll <- pData(buyseEset)$Factor.Value.MammaPrint.prediction
> mammaPrintPredictionAll <- factor(gsub("\\s.+", "", gsub(".+:", "" mammaPrintPredictionAll)))

> ###Summary of MammaPrint results on Buyse
> table(mammaPrintPredictionAll)

mammaPrintPredictionAll
high low
194 113

> levels(mammaPrintPredictionAll) <- 0:1

The prognostic prediction accuracy of the MammaPrint assay for the development of metastasis as first
recurrence within 5 years for the all 307 cases is shown below:

> ###Computing validation accuracy: TTM by MammaPrint (all 307 cases)
> mammaPrintValidAll <- confusionMatrix(table (mammaPrintPredictionAll, buyseGroupAll.ttm))
> mean (mammaPrintValidAll$byClass[c("Sensitivity", "Specificity")])

[1] 0.6545008
> mammaPrintValidAll

Confusion Matrix and Statistics

buyseGroupAll.ttm
mammaPrintPredictionAll 0 1

0 42 152

1 5 108

Accuracy : 0.4886
957 CI : (0.4314, 0.546)
No Information Rate : 0.8469
P-Value [Acc > NIR] : 1

Kappa : 0.1355
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.8936
Specificity : 0.4154

Pos Pred Value : 0.2165

Neg Pred Value : 0.9558
Prevalence : 0.1531

Detection Rate : 0.1368
Detection Prevalence : 0.6319

'Positive' Class : 0

39

5.2.2 Retrained MammaPrint predictions

The chunk of Rcode below was used to predict the prognostic group using the retrained MammaPrint classifier
and the selectect threshold of 0.4.

> ###Compute the cosine correlation for each patient

> cosineCorsOnBuyse <- apply(exprs(buyseDatadll.ttm), 2, cosine, y=gns70Oprofile)
> ###Classify each patient using the specified threshold

> computedMammaPredOnBuyse <- 1 * (cosineCorsOnBuyse > cosineCorThr)

Below is shown the performance using the re-trained MammaPrint classifier in the Buyse cohort.
> confusionMatrix (computedMammaPredOnBuyse, buyseGroupAll.ttm)

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 44 176

1 3 84

Accuracy : 0.4169
957 CI : (0.3612, 0.4743)
No Information Rate : 0.8469
P-Value [Acc > NIR] : 1

Kappa : 0.1034
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.9362
Specificity : 0.3231

Pos Pred Value : 0.2000

Neg Pred Value : 0.9655
Prevalence : 0.1531

Detection Rate : 0.1433
Detection Prevalence : 0.7166

'Positive' Class : 0

The chunk of code below is used to show the disagreement between the predictions recomputed using the
retrained MammaPrint signature and the prediction reported in ArrayExpress “E-TABM-77" record (Buyse
cohort). As previously noted about the performance of the retrained classifier in the Glas cohort, also in this
case there are several discrepancies between the predictions reported for the MammaPrint assay and those
obtained with the retrained classifier. As mentioned above, possible explanations for such differencies are likely
due to differencies in clinical sample annotation, or in gene expression data preprocessing (see .

> ###Evaluate classification on the Buyse cohort

> reportedMamma <- pData(buyseDataAll.ttm)$Factor.Value.MammaPrint.prediction
> table(factor (reportedMamma))

MammaPrint result:high risk MammaPrint result:low risk
194 113

> reportedMamma <- as.numeric(factor (reportedMamma)) - 1
> table(factor (reportedMamma))

0 1
194 113

> table(Computed=computedMammaPredOnBuyse,
Reported=reportedMamma)

40

Reported
Computed 0 1
0 185 35
1 9 78

5.3 Performance of other classifiers in the Buyse cohort
5.3.1 LDA performance in the Buyse cohort

Below is shown the performance using the LDA classifier in the Buyse cohort. The poor performance of LDA
classifier in the validation cohort is likely due to over-fitting due to the large number of parameters that must
be estimated.

> confusionMatrix(as.table(t (confuMat (lda.res))))

Confusion Matrix and Statistics

given
predicted Bad Good
Bad 33 193
Good 14 67

Accuracy : 0.3257
957 CI : (0.2736, 0.3813)
No Information Rate : 0.8469
P-Value [Acc > NIR] : 1

Kappa : -0.0157
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.7021
Specificity : 0.2577

Pos Pred Value : 0.1460

Neg Pred Value : 0.8272
Prevalence : 0.1531

Detection Rate : 0.1075
Detection Prevalence : 0.7362

'Positive' Class : Bad

5.3.2 PAM performance in the Buyse cohort

Below is shown the performance using the PAM classifier in the Buyse cohort.

> pam.buyseResPred <- pamr.predict(pam.glasRes, newx=exprs(buyseDataAll.ttm),
threshold=0, type="class")
> confusionMatrix(pam.buyseResPred, buyseGroupAll.ttm)

Confusion Matrix and Statistics
Reference

Prediction 0 1
0 39 107
1 8 153

Accuracy : 0.6254

41

957 CI : (0.5686, 0.6797)
No Information Rate : 0.8469
P-Value [Acc > NIR] : 1

Kappa : 0.2245
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.8298
Specificity : 0.5885

Pos Pred Value : 0.2671

Neg Pred Value : 0.9503
Prevalence : 0.1531

Detection Rate : 0.1270
Detection Prevalence : 0.4756

'Positive' Class : 0

5.4 Performance of clinical classifiers in the Buyse cohort
5.4.1 Adjuvan! online performance in the Buyse cohort

Below is shown the performance of the Adjuvan! online classifier in the Buyse cohort.

> ###Adjuvant online risk groups in the Buyse cohort

> Adjuvant <- factor(pData(buyseDataAll.ttm)$Factor.Value.Adjuvant.online.risk.status,
levels=c("Adjuvant online:high clinical risk", "Adjuvant online:low clinical risk"))

> levels(Adjuvant) <- 0:1

> confusionMatrix(Adjuvant, buyseGroupAll.ttm)

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 41 181

1 6 79

Accuracy : 0.3909
957 CI : (0.336, 0.4479)
No Information Rate : 0.8469
P-Value [Acc > NIR] : 1

Kappa : 0.0698
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.8723
Specificity : 0.3038

Pos Pred Value : 0.1847

Neg Pred Value : 0.9294
Prevalence : 0.1531
Detection Rate : 0.1336
Detection Prevalence : 0.7231

'Positive' Class : 0

42

5.4.2 NPI performance in the Buyse cohort

Below is shown the performance of the Nottingham Prognostic Index (NPI) in the Buyse cohort.

> ###NPI risk groups in the Buyse cohort
> NPIrisk <- factor(pData(buyseDataAll.ttm)$Factor.Value.NPI.Risk.Status,
levels=c("NPI:high clinical risk", "NPI:low clinical risk", "NPI:not applicable"))
> levels(NPIrisk) <- c(0, 1, NA)
> confusionMatrix (NPIrisk, buyseGroupAll.ttm)

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 37 132

1 9 121

Accuracy : 0.5284
957 CI : (0.4701, 0.5862)
No Information Rate : 0.8462
P-Value [Acc > NIR] : 1

Kappa : 0.135
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.8043
Specificity : 0.4783

Pos Pred Value : 0.2189

Neg Pred Value : 0.9308
Prevalence : 0.1538
Detection Rate : 0.1237
Detection Prevalence : 0.5652

'Positive' Class : 0

5.4.3 St Gallen performance in the Buyse cohort

Below is shown the performance of the St. Gallen criteria in the Buyse cohort.

> ###St.Gallen risk groups in the Buyse cohort

> StGallen <- factor(pData(buyseDataAll.ttm)$Factor.Value.St.Gallen.Risk.Status,
levels=c("St Gallen category:high clinical risk", "St Gallen category:low clinical risk",
"St Gallen category:not applicable"))

> levels(StGallen) <- c(0, 1, NA)

> confusionMatrix(StGallen, buyseGroupAll.ttm)

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 46 228

1 1 26

Accuracy : 0.2392
957, CI : (0.1921, 0.2915)
No Information Rate : 0.8439
P-Value [Acc > NIR] : 1

Kappa : 0.0273

43

Mcnemar's Test P-Value

Sensitivity :
Specificity :

Pos Pred Value :

Neg Pred Value :
Prevalence :

Detection Rate :
Detection Prevalence :

'Positive' Class :

QO O O O O OO

0

: <2e-16

.9787
.1024
L1679
.9630
.1561
.1528
.9103

5.5 ROC-AUC analysis in the Buyse cohort

The chunk of code below shows how to compute resubstitution estimates in the Buyse cohort performing
AUC analysis comparing the kTSP classifier, MammaPrint, the other molecular predictors, and the clinical
predictors (Adjuvant! online, Nottingham Prognostic Index and the St Gallen criteria).

> ###Assemble all predictions in a data.frame
> allPredictorsTest <- data.frame(Response=buyseGroupAll.ttm,

KTSP=KTSP.Classify(exprs (buyseDataAll.ttm), #KTSP classifier

ktspGlasVtV.ttm, myCombineFunc), #Threshold maximizing sensitivity
retrainedMammaPrint=computedMammaPredOnBuyse, #Retrained MammaPrint
reportedMammaPrintBuyse=reportedMamma, #MammaPrint as reported
PAM=-1 + as.numeric(pam.buyseResPred), #PAM classifier (subtract 1 for levels consist
LDA=-1 + as.numeric(testPredictions(lda.res)), #LDA classifier (subtract 1 for levels
NPIrisk=-1 + as.numeric(NPIrisk), #NPI (subtract 1 for levels consistency)
StGallen=-1 + as.numeric(StGallen), #StGallen classifier (subtract 1 for levels consi
Adjuvant=-1 + as.numeric(Adjuvant), #Adjuvant classifier (subtract 1 for levels consi
stringsAsFactors=FALSE)

> ###In the pROC package the case are usually labeled with 1 and controls with O
> allPredictorsTest <- lapply(allPredictorsTest, function(x) abs(-1 + as.numeric(x)))

In Figure [9] are shown results from the ROC and AUC analysis as obtained in the test set for the kTSP
predictors, MammaPrint, the other molecular predictors, and the clinical based classifiers (Adjuvant online,
NPT and the St. Gallen criteria).

44

Call:

roc.default (response = resp, predictor = pred)

Data: pred in 260 controls (resp 0) < 47 cases (resp 1).

Area under the curve: 0.6921

1.0

0.6

Sensitivity

0.4

0.2

0.0
1

0.6
Specificity

T T T
0.4 0.2 0.0

- AUC
- + AUC
AUC
AUC
AUC
AUC

..I

1 0.69;
1 0.63;
1 0.65;
: 0.71;
1 048;
. 0.64;

95% ClI:
95% CI:
95% CI:
95% CI:
95% CI:
95% CI:
= == AUC: 0.54;95% CI:

AUC: 0.59; 95% CI:

0.64-0.74:
0.58 -0.67:
0.60-0.71:
0.65-0.77:
0.41-0.55:
0.58-0.71:
0.51-0.57:
0.53-0.64:

KTSP
retrainedMammaPrint
reportedMammaPrintBuyse
PAM

LDA

NPIrisk

StGallen

Adjuvant

Figure 9: ROC-AUC analysis in the test set of samples (Buyse cohort). The blue continuous line depicts the
ROC curve for the classification obtained obtained by using the dichotomized kTSP classifier using the 2.5
threshold that maximized sensitivity (see Table[8). The legend list the colors for all other lines and the AUC
values for all the predictors, along with 95% confidence intervals, are shown in the figure legend.

5.6 Survival analysis in the Buyse cohorts

5.6.1 Time to development of metastasis

Prepare the data for Kaplan-Meier analysis stratified by MammaPrint and K-TSP prediction results for time
to development of metastasis as first recurrence event.

###Require survival library
require (survival)
###Extract Buyse phenotypic informat

ion

###Assemble Survival object for time to metastasis
survPH. ttm <- Surv(pBuyse$TTM , pBuyse$TTMevent)

>
>
>
> pBuyse <- pData(buyseDataAll.ttm)
>
>

45

The R code chunk below was used to compute the Kaplan-Meier curves for time to metastasis development
stratified by the KTSP prediction.

###0btain and fromat KTSP prediction: set high-risk equal to 1

ktspPrediction <- factor(1 * ! KTSP.Classify(exprs(buyseDataAll.ttm), ktspGlasVtV.ttm, combineFunc=myCombineFunc))
levels (ktspPrediction) <- c("Low", "High")

###Kaplan-Meier curves stratified by KTSP

ktspKM.ttm <- survfit(survPH.ttm strata(ktspPrediction))

vV V. VvV Vv Vv

The R code chunk below was used to compute univariate Cox proportiona hazard model for time to metastasis
development stratified by the KTSP prediction.

> ###Cox proportional hazard model with KTSP
> ktspCOX.ttm <- coxph(survPH.ttm ~ ktspPrediction)

Below the results of the univariate Cox proportiona hazard model are shown:

> ###Cox proportional hazard model results
> summary (ktspCOX. ttm)

Call:
coxph(formula = survPH.ttm ~ ktspPrediction)

n= 307, number of events= 77

coef exp(coef) se(coef) z Pr(>|z]l)
ktspPredictionHigh 0.5408 1.7174 0.2437 2.219 0.0265 *

Signif. codes: O 'x¥*' 0.001 '+ 0.01 '¥' 0.05'.' 0.1 "' 1

exp(coef) exp(-coef) lower .95 upper .95
ktspPredictionHigh 1.717 0.5823 1.065 2.769

Concordance= 0.598 (se = 0.03)
Rsquare= 0.017 (max possible= 0.932)
Likelihood ratio test= 5.19 on 1 df, p=0
Wald test 4.93 on 1 df, p=0.02647
Score (logrank) test 5.05 on 1 df, p=0

In Figure are shown Kaplan-Meier curves for time to metastasis development stratified by the KTSP
prediction.

46

Kaplan—Meier Curves for KTSP classifier: time to metastasis

Q
-
@
o
c ©
Q8 oS
et
o
o
e <]
o o
N
o
Log-rank test p—value = 0.024688
strata(ktspPrediction)=ktspPrediction=Low
g — strata(ktspPrediction)=ktspPrediction=High
T T T T T
0 5 10 15 20 25
Years

Figure 10: Kaplan-Meier curves for &~ TSP prediction: time to development of metastasis.

The R code chunk below was used to compute Kaplan-Meier curves for time to metastasis development as
stratified by the MammaPrint prediction.

> ###Format MammaPrint prediction: set Low-risk as the first levels

> mammaPrintPredictionAll <- factor (mammaPrintPredictionAll, levels=1:0)
> levels(mammaPrintPredictionAll) <- c("Low", "High")
>
>

###Kaplan-Meier curves stratified by MammaPrint
mammaPrintKM.ttm <- survfit(survPH.ttm strata(mammaPrintPredictionAll))

The R code chunk below was used to sompute univariate Cox proportiona hazard model for time to metastasis
development stratified by the MammaPrint prediction.

> ###Cox proportional hazard model with MammaPrint
> mammaPrintCOX.ttm <- coxph(survPH.ttm ~ mammaPrintPredictionAll)

Below the results of the univariate Cox proportional hazard model are shown:

> ###Cox proportional hazard model results
> summary (mammaPrintCOX.ttm)

Call:
coxph(formula = survPH.ttm

mammaPrintPredictionAll)
n= 307, number of events= 77

coef exp(coef) se(coef) z Pr(>|zl)
mammaPrintPredictionAllHigh 0.8173 2.2644 0.2696 3.032 0.00243 *x*

Signif. codes: O '#*x*' 0.001 'xx' 0.01 '¥' 0.05'." 0.1 "' 1

exp(coef) exp(-coef) lower .95 upper .95
mammaPrintPredictionAll1High 2.264 0.4416 1.335 3.841

47

Concordance= 0.613 (se = 0.029)

Rsquare= 0.033 (max possible= 0.932)

Likelihood ratio test= 10.42 on 1 df, p=0.001244
Wald test 9.19 on 1 df, p=0.002433
Score (logrank) test = 9.71 on 1 df, p=0.001833

In Figure [11] Kaplan-Meier curves for time to metastasis stratified by the MammaPrint prediction.

Kaplan—-Meier Curves for MammaPrint assay: time to metastasis

Q |
—
@ |
o
c ©
9 o
=
o
o
O <
O o
N
o
Log-rank test p—value = 0.001833
strata(mammaPrintPredictionAll)=mammaPrintPredictionAll=Low
g | =—— strata(mammaPrintPredictionAll)=mammaPrintPredictionAll=High
T T T T T
0 5 10 15 20 25
Years

Figure 11: Kaplan-Meier curves for the mammaPrint prediction: time to development of metastasis.

The R code chunk below was used to compute Kaplan-Meier curves for time to metastasis development as
stratified by the LDA classifier.

###Format pam prediction: set Low-risk as the first levels
ldaTestPred <- testPredictions(lda.res)

ldaPredictionAll <- factor(ldaTestPred, levels=c("Good", "Bad"))
levels(ldaPredictionAll) <- c("Low", "High")

###Kaplan-Meier curves stratified by PAM

1daKM.ttm <- survfit(survPH.ttm strata(ldaPredictionAll))

vV V.V Vv Vv Vv

The R code chunk below was used to sompute univariate Cox proportiona hazard model for time to metastasis
development stratified by the LDA prediction.

> ###Cox proportional hazard model with LDA
> 1daCO0X.ttm <- coxph(survPH.ttm ~ ldaPredictionAll)

Below the results of the univariate Cox proportional hazard model are shown:

> ###Cox proportional hazard model results
> summary (1daCOX.ttm)

Call:
coxph(formula = survPH.ttm ~ ldaPredictionAll)

n= 307, number of events= 77

48

ldaPredictionAllHigh -0.07594

ldaPredictionAl11High

Concordance= 0.509
Rsquare= 0
Likelihood ratio test

Wald test

Score (logrank) test

coef exp(coef) se(coef) z Pr(>|z])
0.92687 0.26090 -0.291 0.771

exp(coef) exp(-coef) lower .95 upper .95

(se
(max possible= 0.932)

0.9269 1.079 0.5558 1.546
= 0.026)

0.08 on 1 df, p=0.7723

0.08 on 1 df, p=0.771

0.08 on 1 df, p=0.7709

In Figure [12| Kaplan-Meier curves for time to metastasis stratified by the LDA prediction.

Proportion

0.4

1.0

0.8

0.6

0.2

0.0

Kaplan—Meier Curves for the LDA predictor: time to metastasis

Log-rank test p—value = 0.770937

strata(ldaPredictionAll)=IdaPredictionAll=Low
| =—— strata(ldaPredictionAll)=IdaPredictionAll=High

0 5 10 15
Years

20 25

Figure 12: Kaplan-Meier curves for the LDA prediction: time to development of metastasis.

The R code chunk below was used to compute Kaplan-Meier curves for time to metastasis development as
stratified by the PAM classifier.

###Format pam prediction: set Low-risk as the first levels
pamPredictionAll <- factor(pam.buyseResPred, levels=1:0)

###Kaplan-Meier curves stratified by PAM

>
>
> levels(pamPredictionAll) <- c("Low", "High")
>
>

pamKM.ttm <- survfit(survPH.ttm strata(pamPredictionAll))

The R code chunk below was used to sompute univariate Cox proportiona hazard model for time to metastasis
development stratified by the PAM prediction.

> ###Cox proportional hazard model with PAM
> pamCOX.ttm <- coxph(survPH.ttm ~ pamPredictionAll)

Below the results of the univariate Cox proportional hazard model are shown:

49

> ###Cox proportional hazard model results
> summary (pamCOX. ttm)

Call:
coxph (formula = survPH.ttm ~ pamPredictionAll)

n= 307, number of events= 77

coef exp(coef) se(coef) z Pr(>|z/)
pamPredictionAllHigh 0.6269 1.8717 0.2315 2.707 0.00678 **

Signif. codes: O 's*x*' 0.001 'x+' 0.01 '¥' 0.05'." 0.1 "' 1

exp(coef) exp(-coef) lower .95 upper .95
pamPredictionAllHigh 1.872 0.56343 1.189 2.947

Concordance= 0.612 (se = 0.029)

Rsquare= 0.024 (max possible= 0.932)

Likelihood ratio test= 7.47 on 1 df, p=0.006268
Wald test = 7.33 on 1 df, p=0.00678
Score (logrank) test = 7.57 on 1 df, p=0.00593

In Figure [I3] Kaplan-Meier curves for time to metastasis stratified by the PAM prediction.

Kaplan—Meier Curves for the PAM predictor: time to metastasis

o |
-
@
o
c ©
Q8 S
et
o
o
< |
o o
N
o
Log-rank test p—value = 0.00593
strata(pamPredictionAll)=pamPredictionAll=Low
8 | =—— strata(pamPredictionAll)=pamPredictionAll=High
T T T T T
0 5 10 15 20 25
Years

Figure 13: Kaplan-Meier curves for the PAM prediction: time to development of metastasis.

5.6.2 Disease free survival

Prepare the data for Kaplan-Meier analysis stratified by MammaPrint and K-T'SP prediction results for disease
free survival.

> ###Disease free survival
> survPH.dfs <- Surv(pBuyse$DFS , pBuyse$DFSevent)

50

The R code chunk below was used to compute the Kaplan-Meier curves for disease free survival as stratified
by the KTSP prediction.

> ###Kaplan-Meier curves stratified by KTSP
> ktspKM.dfs <- survfit(survPH.dfs strata(ktspPrediction))

The R code chunk below was used to compute the univariate Cox proportional hazard model for the disease
free survival time as stratified by the KTSP prediction.

> ###Cox proportional hazard model with KTSP
> ktspCOX.dfs <- coxph(survPH.dfs ~ ktspPrediction)

Below the results of the univariate Cox proportional hazard model are shown:

> ###Cox proportional hazard model results
> summary (ktspCOX.dfs)

Call:
coxph(formula = survPH.dfs ~ ktspPrediction)

n= 307, number of events= 139

coef exp(coef) se(coef) z Pr(>|zl)
ktspPredictionHigh 0.3578 1.4302 0.1761 2.032 0.0421 *

Signif. codes: O 'x¥*' 0.001 '+ 0.01 '¥' 0.05'.' 0.1 "' 1

exp(coef) exp(-coef) lower .95 upper .95
ktspPredictionHigh 1.43 0.6992 1.013 2.02

Concordance= 0.561 (se = 0.022)
Rsquare= 0.014 (max possible= 0.992)
Likelihood ratio test= 4.24 on 1 df, p=0
Wald test 4.13 on 1 df, p=0.04213
Score (logrank) test = 4.17 on 1 df, p=0

In Figure are shown Kaplan-Meier curves for disease free survival ad stratified by the KTSP predic-
tion.

51

Kaplan—Meier Curves for KTSP classifier: disease free survival

Q
-
@
o
c ©
Q8 oS
et
o
o
e <]
o o
—
N
o
Log-rank test p—value = 0.041042
strata(ktspPrediction)=ktspPrediction=Low
g — strata(ktspPrediction)=ktspPrediction=High
T T T T
0 5 10 15 20

Years

Figure 14: Kaplan-Meier curves for &TSP prediction: disease free survival.

The R code chunk below was used to compute the Kaplan-Meier curves for disease free survival as stratified
by the MammaPrint prediction.

> ###Kaplan-Meier curves stratified by MammaPrint
> mammaPrintKM.dfs <- survfit(survPH.dfs strata(mammaPrintPredictionAll))

The R code chunk below was used to compute the univariate Cox proportional hazard model for disease free
survival as stratified by the MammaPrint prediction.

> ###Cox proportional hazard model with KTSP
> mammaPrintCOX.dfs <- coxph(survPH.dfs ~ mammaPrintPredictionAll)

Below the results of the univariate Cox proportional hazard model are shown:

> ###Cox proportional hazard model results
> summary (mammaPrintCOX.dfs)

Call:
coxph(formula = survPH.dfs ~ mammaPrintPredictionAll)

n= 307, number of events= 139

coef exp(coef) se(coef) z Pr(>|zl)
mammaPrintPredictionAllHigh 0.4101 1.5070 0.1826 2.246 0.0247 *

Signif. codes: O '#*x*' 0.001 'x+' 0.01 '¥' 0.05'." 0.1 "' 1

exp(coef) exp(-coef) lower .95 upper .95
mammaPrintPredictionAll1High 1.507 0.6636 1.054 2.155

Concordance= 0.564 (se = 0.022)

Rsquare= 0.017 (max possible= 0.992)
Likelihood ratio test= 5.27 on 1 df, p=0.02168

52

Wald test =5.04 on 1 df, p=0.02471
Score (logrank) test = 5.11 on 1 df, p=0.02373

In Figure [15] Kaplan-Meier curves for disease free survival as stratified by the MammaPrint prediction.

Kaplan—Meier Curves for MammaPrint assay: disease free survival

Q |
—
@ |
o
c ©
9 o
=
o
o
O <
O o
-
N
o
Log-rank test p—value = 0.023725
strata(mammaPrintPredictionAll)=mammaPrintPredictionAll=Low
g | =—— strata(mammaPrintPredictionAll)=mammaPrintPredictionAll=High
T T T T
0 5 10 15 20
Years

Figure 15: Kaplan-Meier curves for mammaPrint prediction: disease free survival.

The R code chunk below was used to compute the Kaplan-Meier curves for disease free survival as stratified
by the LDA prediction.

> ###Kaplan-Meier curves stratified by LDA
> ldaKM.dfs <- survfit(survPH.dfs strata(ldaPredictionAll))

The R code chunk below was used to compute the univariate Cox proportional hazard model for disease free
survival as stratified by the LDA prediction.

> ###Cox proportional hazard model with KTSP
> 1daC0X.dfs <- coxph(survPH.dfs ~ ldaPredictionAll)

Below the results of the univariate Cox proportional hazard model are shown:

> ###Cox proportional hazard model results
> summary(1daCOX.dfs)

Call:
coxph(formula = survPH.dfs ~ ldaPredictionAll)

n= 307, number of events= 139

coef exp(coef) se(coef) z Pr(>|zl)
ldaPredictionAllHigh -0.1168 0.8898 0.1926 -0.606 0.544

exp(coef) exp(-coef) lower .95 upper .95
ldaPredictionAllHigh 0.8898 1.124 0.61 1.298

53

Concordance= 0.516 (se = 0.019)
Rsquare= 0.001 (max possible= 0.992)

Likelihood ratio test= 0.36
Wald test = 0.37
Score (logrank) test = 0.37

on 1 df, p=0.5481
on 1 df, p=0.5444
on 1 df, p=0.5442

In Figure [16] Kaplan-Meier curves for disease free survival as stratified by the LDA prediction.

1.0

0.6 0.8

Proportion
0.4

0.2

0.0

Figure

The R code chunk below
by the PAM prediction.

Kaplan—Meier Curves for LDA prediction: disease free survival

Log-rank test p—value = 0.544178

strata(ldaPredictionAll)=IdaPredictionAll=Low
— strata(ldaPredictionAll)=ldaPredictionAll=High

5 10
Years

15 20

16: Kaplan-Meier curves for LDAprediction: disease free survival.

was used to compute the Kaplan-Meier curves for disease free survival as stratified

> ###Kaplan-Meier curves stratified by PAM
> pamKM.dfs <- survfit(survPH.dfs strata(pamPredictionAll))

The R code chunk below was used to compute the univariate Cox proportional hazard model for disease free
survival as stratified by the PAM prediction.

> ###Cox proportional hazard model with KTSP
> pamCOX.dfs <- coxph(survPH.dfs ~ pamPredictionAll)

Below the results of the univariate Cox proportional hazard model are shown:

> ###Cox proportional hazard model results

> summary (pamCOX.dfs)

Call:

coxph(formula = survPH.dfs ~ pamPredictionAll)

n= 307, number of events= 139

pamPredictionAl11High 0.2953

coef exp(coef) se(coef) z Pr(>|zl)

1.3436 0.1698 1.739 0.082 .

54

Signif. codes: O 'x¥*' 0.001 '+ 0.01 '¥' 0.05'.' 0.1 "' 1

exp(coef) exp(-coef) lower .95 upper .95
pamPredictionAllHigh 1.344 0.7443 0.9632 1.874

Concordance= 0.567 (se = 0.022)
Rsquare= 0.01 (max possible= 0.992)
Likelihood ratio test= 3.01 on 1 df, p=0
Wald test 3.02 omn 1 df, p=0.08204
Score (logrank) test = 3.05 on 1 df, p=0

In Figure [I7 Kaplan-Meier curves for disease free survival as stratified by the PAM prediction.

Kaplan—Meier Curves for PAM prediction: disease free survival

Q
-
@Q
o
c ©
9 o
et
o
o
<]
o o
N
o
Log-rank test p—value = 0.080938
strata(pamPredictionAll)=pamPredictionAll=Low
8 | =—— strata(pamPredictionAll)=pamPredictionAll=High
T T T T
0 5 10 15 20
Years

Figure 17: Kaplan-Meier curves for PAMprediction: disease free survival.

5.6.3 Overall survival

Prepare the data for Kaplan-Meier analysis stratified by MammaPrint and K-TSP prediction results for overall
survival.

> ###0verall survival
> survPH.os <- Surv(pBuyse$0S , pBuyse$0Sevent)

The R code chunk below was used to compute the Kaplan-Meier curves for overall survival as stratified by the
KTSP prediction. x

> ###Kaplan-Meier curves stratified by KTSP
> ktspKM.os <- survfit(survPH.os strata(ktspPrediction))

The R code chunk below was used to compute the univariate Cox proportional hazard model for overall survival
as stratified by the KTSP prediction.

> ###Cox proportional hazard model with KTSP
> ktspCOX.os <- coxph(survPH.os ~ ktspPrediction)

55

Below the results of the univariate Cox proportional hazard model are shown:

> ###Cox proportional hazard model results
> summary (ktspCOX.os)

Call:
coxph(formula = survPH.os ~ ktspPrediction)

n= 307, number of events= 82

coef exp(coef) se(coef) z Pr(>|z])
ktspPredictionHigh 0.6665 1.9473 0.2430 2.743 0.00609 **

Signif. codes: O '#**' 0.001 '%x' 0.01 '¥' 0.05'." 0.1 "' 1

exp(coef) exp(-coef) lower .95 upper .95
ktspPredictionHigh 1.947 0.5135 1.21 3.135

Concordance= 0.607 (se = 0.029)

Rsquare= 0.026 (max possible= 0.941)

Likelihood ratio test= 8.12 on 1 df, p=0.00437
Wald test =7.52 on 1 df, p=0.006092
Score (logrank) test = 7.8 on 1 df, p=0.005215

In Figure [18 are shown Kaplan-Meier curves for overall survival as stratified by the KTSP prediction.

Kaplan—Meier Curves for KTSP classifier: overall survival

o |
—
@
o
c ©
L S
et
o
o
© <«
0 o
N
o
Log-rank test p—value = 0.005215
strata(ktspPrediction)=ktspPrediction=Low
8 | = strata(ktspPrediction)=ktspPrediction=High
T T T T T
0 5 10 15 20 25
Years

Figure 18: Kaplan-Meier curves for &~TSP prediction: overall survival.

The R code chunk below was used to compute the Kaplan-Meier curves for overall survival as stratified by the
MammaPrint prediction.

> ###Kaplan-Meier curves stratified by MammaPrint
> mammaPrintKM.os <- survfit (survPH.os strata(mammaPrintPredictionAll))

The R code chunk below was used to compute the univariate Cox proportional hazard model for overall survival

56

ad stratified by the MammaPrint prediction.

> ###Cox proportional hazard model with MammaPrint
> mammaPrintCOX.os <- coxph(survPH.os ~ mammaPrintPredictionAll)

Below the results of the univariate Cox proportional hazard model are shown:

> ###Cox proportional hazard model results
> summary (mammaPrintCOX. os)

Call:
coxph(formula = survPH.os ~ mammaPrintPredictionAll)

n= 307, number of events= 82

coef exp(coef) se(coef) z Pr(>|zl)
mammaPrintPredictionAllHigh 1.050 2.857 0.279 3.763 0.000168 ***

Signif. codes: O 'x¥*' 0.001 '+ 0.01 '¥' 0.05'.' 0.1 "' 1

exp(coef) exp(-coef) lower .95 upper .95
mammaPrintPredictionAllHigh 2.857 0.3501 1.653 4.935

Concordance= 0.624 (se = 0.029)

Rsquare= 0.054 (max possible= 0.941)

Likelihood ratio test= 17.06 on 1 df, p=3.622e-05
Wald test = 14.16 omn 1 df, p=0.0001682
Score (logrank) test = 15.5 on 1 df, p=8.272e-05

In Figure [19 Kaplan-Meier curves for overall survival as tratified by the MammaPrint prediction.

Kaplan—Meier Curves for MammaPrint assay: overall survival

Q
-
@
o
c ©
Q8 S
et
o
o
<]
o o
N
o
Log-rank test p—value = 8.3e-05
strata(mammaPrintPredictionAll)=mammaPrintPredictionAll=Low
8 — strata(mammaPrintPredictionAll)=mammaPrintPredictionAll=High
T T T T T
0 5 10 15 20 25
Years

Figure 19: Kaplan-Meier curves for mammaPrint prediction: overall survival.

The R code chunk below was used to compute the Kaplan-Meier curves for overall survival as stratified by the
LDA prediction.

57

> ###Kaplan-Meier curves stratified by LDA
> ldaKM.os <- survfit(survPH.os strata(ldaPredictionAll))

The R code chunk below was used to compute the univariate Cox proportional hazard model for overall survival
ad stratified by the LDA prediction.

> ###Cox proportional hazard model with LDA
> 1daC0X.os <- coxph(survPH.os ~ ldaPredictionAll)

Below the results of the univariate Cox proportional hazard model are shown:

> ###Cox proportional hazard model results
> summary (1daCOX.os)

Call:
coxph(formula = survPH.os ~ ldaPredictionAll)

n= 307, number of events= 82

coef exp(coef) se(coef) z Pr(>|zl)
ldaPredictionAllHigh -0.1253 0.8822 0.2501 -0.501 0.616

exp(coef) exp(-coef) lower .95 upper .95
ldaPredictionAl11High 0.8822 1.134 0.5404 1.44

Concordance= 0.519 (se = 0.025)

Rsquare= 0.001 (max possible= 0.941)
Likelihood ratio test= 0.25 omn 1 df, p=0.6197
Wald test = 0.25 on 1 df, p=0.6163
Score (logrank) test = 0.25 on 1 df, p=0.616

In Figure 20| Kaplan-Meier curves for overall survival as tratified by the LDA prediction.

Kaplan—Meier Curves for LDA: overall survival

o
—
@
o
c ©
L o
s
(@)
o ———t
e <.
o o
N
o
Log-rank test p—value = 0.616025
strata(ldaPredictionAll)=ldaPredictionAll=Low
g | =—— strata(ldaPredictionAll)=IdaPredictionAll=High
T T T T T
0 5 10 15 20 25
Years

Figure 20: Kaplan-Meier curves for LDA prediction: overall survival.

58

The R code chunk below was used to compute the Kaplan-Meier curves for overall survival as stratified by the
PAM prediction.

> ###Kaplan-Meier curves stratified by PAM
> pamKM.os <- survfit(survPH.os strata(pamPredictionAll))

The R code chunk below was used to compute the univariate Cox proportional hazard model for overall survival
ad stratified by the PAM prediction.

> ###Cox proportional hazard model with PAM
> pamCOX.os <- coxph(survPH.os ~ pamPredictionAll)

Below the results of the univariate Cox proportional hazard model are shown:

> ###Cox proportional hazard model results
> summary (pamCOX. os)

Call:
coxph(formula = survPH.os ~ pamPredictionAll)

n= 307, number of events= 82

coef exp(coef) se(coef) z Pr(>|zl)
pamPredictionAllHigh 0.7489 2.1147 0.2268 3.303 0.000958 **x*

Signif. codes: O 'x¥*' 0.001 '+ 0.01 '¥' 0.05'.' 0.1 "' 1

exp(coef) exp(-coef) lower .95 upper .95
pamPredictionAl11High 2.115 0.4729 1.356 3.298

Concordance= 0.63 (se = 0.029)

Rsquare= 0.036 (max possible= 0.941)

Likelihood ratio test= 11.26 on 1 df, p=0.0007913
Wald test = 10.91 on 1 df, p=0.0009579
Score (logrank) test = 11.42 on 1 df, p=0.0007261

In Figure [21] Kaplan-Meier curves for overall survival as tratified by the PAM prediction.

59

Kaplan—Meier Curves for PAM: overall survival

Q|
-
@ |
o
c ©
0 o]
et
o
o
e < |
o o
N
o
Log-rank test p—value = 0.000726
strata(pamPredictionAll)=pamPredictionAll=Low
8 | =—— strata(pamPredictionAll)=pamPredictionAll=High
T T T T T
0 5 10 15 20 25
Years

Figure 21: Kaplan-Meier curves for PAM prediction: overall survival.

5.6.4 Summary of Cox proportional hazards models analysis

Table [11] summarizes the results from univariate Cox proportional hazard models.

Table 11: Cox proportional hazard model results

Model Hazard.Ratio Confidence.Interval P.value

ktsp prediction for DFS 1.43 1.01 - 2.02 0.039429
ktsp prediction for OS 1.95 1.21 - 3.14 0.00437

ktsp prediction for TTM 1.72 1.07 - 2.77 0.022707
lda prediction for DFS 0.89 0.61 - 1.30 0.548052
lda prediction for OS 0.88 0.54 - 1.44 0.619666
lda prediction for TTM 0.93 0.56 - 1.55 0.772328
mammaPrint prediction for DFS 1.51 1.05 - 2.16 0.021675
mammaPrint prediction for OS 2.86 1.65 - 4.94 3.6e-05

mammaPrint prediction for TTM 2.26 1.33 - 3.84 0.001244
pam prediction for DFS 1.34 0.96 - 1.87 0.082696
pam prediction for OS 2.11 1.36 - 3.30 0.000791
pam prediction for TTM 1.87 1.19 - 2.95 0.006268

5.7 Stratification by estrogen receptor status

Below are shown the classification results for the MammaPrint test and the K-TSP classifier stratified by
Estrogen Receptor status as reported for the Buyse cohort (ER-positive and ER-negative).

> ###Format ER status

> ERstatus <- factor(pBuysel, "Factor.Value.ER.status"])

> levels(ERstatus) <- gsub("Estrogen Receptor ", "", levels(ERstatus))
> levels(ERstatus) [levels (ERstatus) == "unknown"] <- NA

60

> ###Ktsp + MammaPrint + ER
> table(ktspPrediction, mammaPrintPredictionAll, ERstatus)

, , ERstatus = Negative

mammaPrintPredictionAll
ktspPrediction Low High
Low 3 6
High 2 79

, , ERstatus = Positive
mammaPrintPredictionAll
ktspPrediction Low High

Low 88 25
High 18 81

61

6 System information

Session information:

> toLatex(sessionInfo())

R Under development (unstable) (2013-02-11 r61902), x86_64-apple-darwinl0.8.0
e Locale: C
e Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, splines, stats, utils

e Other packages: AnnotationDbi 1.21.16, Biobase 2.19.3, BiocGenerics 0.5.6, BiocInstaller 1.9.8, DBI 0.2-5,
KernSmooth 2.23-10, MASS 7.3-24, MLInterfaces 1.39.5, RSQLite 0.11.2, RWeka 0.4-16, Snowball 0.0-9,
annotate 1.37.4, caTools 1.14, cacheSweave 0.6-1, caret 5.15-61, class 7.3-6, cluster 1.14.4, 1071 1.6-1,
filehash 2.2-1, foreach 1.4.0, gdata 2.12.0, genefilter 1.41.4, gplots 2.11.0, gtools 2.7.1, impute 1.33.0,
lattice 0.20-15, limma 3.15.18, Isa 0.63-3, mammaPrintData 0.99.5, org.Hs.eg.db 2.9.0, pROC 1.5.4, pamr 1.54,
plyr 1.8, rda 1.0.2-2, reshape2 1.2.2, rpart 4.1-1, seventyGeneData 0.99.5, sfsmisc 1.0-23, stashR 0.3-5,
survival 2.37-4, switchBox 0.99.3, xtable 1.7-1

e Loaded via a namespace (and not attached): TRanges 1.17.41, Matrix 1.0-12, RWekajars 3.7.9-1, XML 3.96-0.2,
bitops 1.0-5, codetools 0.2-8, digest 0.6.3, iterators 1.0.6, mboost 2.2-2, rJava 0.9-4, stats4 3.0.0, stringr 0.6.2,
tools 3.0.0

62

7

References

References

[1]

van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton
MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH: Gene
expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415(6871):530-6.

van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts
C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H,
Rodenhuis S, Rutgers ET, Friend SH, Bernards R: A gene-expression signature as a predictor of
survival in breast cancer. N Engl J Med 2002, 347(25):1999-2009. [1533-4406 (Electronic) Evaluation
Studies Journal Article].

Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC, Bakx N, Lahti-Domenici JS, Bru-
insma TJ, Warmoes MO, Bernards R, Wessels LF, Van’t Veer LJ: Converting a breast
cancer microarray signature into a high-throughput diagnostic test. BMC Genomics
2006, 7:278, [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=17074082]. [1471-2164 (Electronic) Journal Article Research Support, Non-U.S.
Gov't].

Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, d’Assignies MS, Bergh J,
Lidereau R, Ellis P, Harris A, Bogaerts J, Therasse P, Floore A, Amakrane M, Piette F,
Rutgers E, Sotiriou C, Cardoso F, Piccart MJ: Validation and clinical utility of a 70-
gene prognostic signature for women with node-negative breast cancer. J Natl Cancer
Inst 2006, 98(17):1183-92, [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=
PubMed&dopt=Citation&list_uids=16954471]. [1460-2105 (Electronic) Journal Article Multicenter
Study Research Support, Non-U.S. Gov’t Validation Studies].

Geman D, d’Avignon C, Naiman DQ, Winslow RL: Classifying gene expression profiles from pair-
wise mRNA comparisons. Stat Appl Genet Mol Biol 2004, 3:Articlel9, |[http://dx.doi.org/10.
2202/1544-6115.1071].

Leek JT: The tspair package for finding top scoring pair classifiers in R. Bioinformatics 2009,
25(9):1203-1204, [http://dx.doi.org/10.1093/bioinformatics/btp126].

Peng RD: Reproducible research in computational science. Science 2011, 334(6060):1226-1227,
[http://dx.doi.org/10.1126/science.1213847].

Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapush-
esky M, Kemmeren P, Lara GG, Oezcimen A, Rocca-Serra P, Sansone SA: ArrayExpress—a public
repository for microarray gene expression data at the EBI. Nucleic Acids Res 2003, 31:68-71.
[1362-4962 (Electronic) Journal Article].

Marchionni L, Wilson RF, Marinopoulos SS, Wolff AC, Parmigiani G, Bass EB, Goodman SN: Impact
of gene expression profiling tests on breast cancer outcomes. Evid Rep Technol Assess (Full
Rep) 2007, (160):1-105.

Marchionni L, Wilson RF, Wolff AC, Marinopoulos S, Parmigiani G, Bass EB, Goodman SN: Systematic
review: gene expression profiling assays in early-stage breast cancer. Ann Intern Med 2008,
148(5):358-369.

63

[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17074082]
[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17074082]
[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16954471]
[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16954471]
[http://dx.doi.org/10.2202/1544-6115.1071]
[http://dx.doi.org/10.2202/1544-6115.1071]
[http://dx.doi.org/10.1093/bioinformatics/btp126]
[http://dx.doi.org/10.1126/science.1213847]

[11]

[12]

[13]

[14]

Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB:
Missing value estimation methods for DN A microarrays. Bioinformatics 2001, 17(6):520-525.

Tibshirani R, Hastie T, Narasimhan B, Chu G: Diagnosis of multiple cancer types by shrunken
centroids of gene expression. Proc Natl Acad Sci U S A 2002, 99(10):6567-72.

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Miiller M: pROC: an open-source
package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011, 12:77,
[http://dx.doi.org/10.1186/1471-2105-12-771.

Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE: Rosetta error model for gene expression
analysis. Bioinformatics 2006, 22(9):1111-1121, [http://dx.doi.org/10.1093/bioinformatics/
bt1045].

Ravdin PM, Siminoff LA, Davis GJ, Mercer MB, Hewlett J, Gerson N, Parker HL: Computer program
to assist in making decisions about adjuvant therapy for women with early breast cancer.
J Clin Oncol 2001, 19(4):980-991.

64

[http://dx.doi.org/10.1186/1471-2105-12-77]
[http://dx.doi.org/10.1093/bioinformatics/btl045]
[http://dx.doi.org/10.1093/bioinformatics/btl045]

	Overview
	R-Bioconductor analytical packages
	Gene expression and clinical data preparation
	The mammaPrintData R-Bioconductor package
	Glas cohort: ArrayExpress ``E-TABM-115'' series
	Dye-swap hybridization pairs identification
	Gene expression correction and summarization

	Buyse cohort: ArrayExpress ``E-TABM-77'' series
	Gene expression correction and summarization

	End-point and prognostic groups selection
	Training set: Glas cohort (E-TABM-115)
	Test set: Buyse cohort (E-TABM-77)

	Comparing the clinical information across studies and cohorts
	The van't Veer cases in the Glas study
	The Van de Vijver cases in the Glas study

	Prognostic predictor training
	K-TSP classifier development using the Glas data set
	Definition of the k-TSP classifier training functions
	k optimization based on resubstitution AUC

	Re-training of the MammaPrint classifier
	Development of other classifiers using the Glas data set
	LDA classifier training
	PAM classifier training

	ROC-AUC analysis in the Glas cohort

	Prognostic predictor validation
	k-TSP classifier performance in the Buyse cohort
	MammaPrint assay performance in the Buyse cohort
	Reported MammaPrint predictions
	Retrained MammaPrint predictions

	Performance of other classifiers in the Buyse cohort
	LDA performance in the Buyse cohort
	PAM performance in the Buyse cohort

	Performance of clinical classifiers in the Buyse cohort
	Adjuvan! online performance in the Buyse cohort
	NPI performance in the Buyse cohort
	St Gallen performance in the Buyse cohort

	ROC-AUC analysis in the Buyse cohort
	Survival analysis in the Buyse cohorts
	Time to development of metastasis
	Disease free survival
	Overall survival
	Summary of Cox proportional hazards models analysis

	Stratification by estrogen receptor status

	System information
	References

